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Hot Jupiters (giant planets with orbital periods less than 10 days) and warm

Jupiters (giant planets with orbital periods between 10-300 days) are major

topics in exoplanetary dynamics, with unresolved puzzles regarding their dy-

namical histories and migration. Many observed systems show hints of a

dynamically-active past, such as large stellar spin-orbit misalignments (obliq-

uities) in hot Jupiter systems, and substantial eccentricities in warm Jupiter

systems. Some stellar binaries present similar puzzles as close-in exoplanets,

including a range of eccentricities and obliquities. This dissertation explores

the spin and orbital evolution of close-in giant exoplanets and binaries due to

the presence of an external companion. A third body may perturb the orbit of

the planet or binary, leading to secular changes in eccentricity and inclination.

Alongside the secular evolution of the orbit, an oblate star experiences a torque

from the planet or binary companion, leading to precession of the spin axis and

obliquity evolution. This dissertation explores such spin-orbit dynamics in a

variety of contexts: (1) I conduct a population synthesis of hot Jupiter migration

in stellar binaries due to Lidov-Kozai cycles, and present the resulting distribu-

tions of spin-orbit misalignment angles and formation efficiencies. (2) Consid-

ering both hot and warm Jupiter systems with external planetary companions,

I identify the requirements for the outer planet to generate dramatic obliquity

growth through a secular spin-orbit resonance, which may be encountered as



the host star spins down due to magnetic braking. (3) I consider stellar binaries

with a tertiary companion, and identify the system architectures in which the

tertiary may affect the obliquities of the inner binary members. (4) I consider

how an inclined circumbinary disk may excite obliquities in stellar binaries. In

addition to spin-orbit dynamics, this dissertation also explores two different

mechanisms for exciting eccentricities in warm Jupiter systems, due to secular

perturbations from inclined companions, and in-situ scattering.



BIOGRAPHICAL SKETCH

Kassandra Anderson was born in Oakland CA and grew up in Ann Arbor MI. In

her teenage years she developed a strong interest in science, especially in astron-

omy and physics. She completed her undergraduate studies at the University

of Michigan, and received her B.S. in Physics in 2012. While at the University

of Michigan, Kassandra began undergraduate research in astronomy and com-

pleted her senior thesis on exoplanet dynamics. She remained in Ann Arbor for

an additional year following graduation to continue her research, working on

photoevaporation of protoplanetary disks. In August 2013, she moved to Ithaca

NY to pursue a PhD in Astronomy, working with Professor Dong Lai on dy-

namics of giant exoplanets and stellar binaries. In September 2019, Kassandra

will move to Princeton NJ to begin a Lyman Spitzer, Jr. Postdoctoral Fellowship

at Princeton University. Besides astronomy, Kassandra’s interests and hobbies

include sewing, knitting, ballet and other dance forms, cooking, and of course

cats. One day she plans to adopt two cats and name them Lidov and Kozai,

in honor of the Lidov-Kozai effect, which appears repeatedly throughout this

dissertation.

iii



To my mother, for her unwavering support, enthusiasm, and encouragement of

my endeavors.

iv



ACKNOWLEDGEMENTS

First and foremost I thank my advisor Dong Lai for the countless hours spent

mentoring me and helping me to develop as a scientist. My success thus far is in

no small part due to Dong’s support and tutelage over the years. I am extremely

fortunate to have had the opportunity for research collaboration with such an

energetic and enthusiastic scientist.

Next, I thank the members of my thesis committee, Terry Herter, Richard

Lovelace, and Lisa Kaltenegger for their time, feedback, and support.

My undergraduate mentors Fred Adams and Nuria Calvet were instrumen-

tal in developing my research skills. I am grateful to them for their time, limit-

less patience, and for instilling the confidence in me to pursue a PhD in astron-

omy.

I have enjoyed collaborating with Cornell graduate students Natalia Storch,

Michael Pu, and Michelle Vick. In addition, I appreciate many stimulating sci-

ence discussions with members of Dong’s group over the years, including Ryan
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CHAPTER 1

INTRODUCTION

Hot Jupiters (giant planets with orbital periods less than about ten days)

have served as a major topic in exoplanetary science following the discovery of

the first hot Jupiter by Mayor & Queloz in 1995. Over twenty subsequent years

of exoplanet observations have revealed a rich variety of planetary systems and

architectures, including a sample of several hundred hot Jupiters. Although hot

Jupiters are intrinsically rare, with an occurrence rate of only ∼ 1% (e.g. Wright

et al., 2012), such planets continue to be of great interest, given their extreme

environments and with no analogue in the solar system. In recent years, warm

Jupiters (giant planets with orbital periods roughly between 10 and 300 days)

have gained considerable attention alongside hot Jupiters.

Many unresolved puzzles involving hot and warm Jupiters remain, espe-

cially regarding their formation and migration histories. Some recent work has

considered the possibility of forming hot Jupiters in-situ (Boley et al., 2016; Baty-

gin et al., 2016), but given the conditions so close to the star, most formation

studies consider the scenario in which hot Jupiters formed farther away, at lo-

cations of ∼ several AU, and subsequently undergo inward migration, arriving

at a final orbital period of several days. Planet migration comes two distinct fla-

vors. One possibility is disk-driven migration, in which planets are transported

inwards due to torques from the protoplanetary disk (e.g. Lin et al., 1996; Tanaka

et al., 2002; Kley, & Nelson, 2012; Baruteau et al., 2014). The second possibility

is high-eccentricity migration, in which the planet’s eccentricity is excited to an

extreme value (e & 0.9) by a stellar or planetary companion(s), so that tides

raised on the planet at pericenter distances shrink and eventually circularize
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the orbit. High-eccentricity migration itself comes in several distinct flavors de-

pending on the details of the eccentricity excitation, including excitation from

an inclined companion due to Lidov-Kozai cycles (Lidov, 1962; Kozai, 1962) or

other secular perturbations (Wu & Murray, 2003; Fabrycky & Tremaine, 2007;

Naoz et al., 2012; Petrovich, 2015a,b; Anderson et al., 2016; Muñoz et al., 2016;

Hamers et al., 2017; Vick et al., 2019) , scatterings (possibly combined with sec-

ular interactions) (Rasio & Ford, 1996; Nagasawa et al., 2008; Nagasawa, & Ida,

2011; Beaugé & Nesvorný, 2012), and secular chaos (Lithwick & Naoz, 2011;

Lithwick, & Wu, 2014; Teyssandier et al., 2019). See also Dawson, & Johnson

(2018) for a recent review. Despite the fact that giant planet migration is one

of the oldest theory problems in the field of exoplanets, no general consensus

has been reached as to which migration mechanism (if any) is responsible for

producing the majority of hot Jupiters. Warm Jupiters raise similar questions

regarding their formation and migration. Whether hot and warm Jupiters share

the same formation/migration histories is still an open question.

Theories of planet formation and migration must be able to account for sev-

eral observational features of the hot and warm Jupiter samples. For example,

many hot Jupiter systems are observed to have an orbital axis that is misaligned

with respect to the spin-axis of the host star, or equivalently, an orbital plane

that is misaligned with respect to the stellar equator (e.g. Hébrard et al., 2008;

Narita et al., 2009; Winn et al., 2009; Triaud et al., 2010; Albrecht et al., 2012a;

Moutou et al., 2011). The majority of these measurements have been obtained

from Rossiter-McLaughlin observations (Rossiter, 1924; McLaughlin, 1924), in

which a transiting planet induces an anomaly in the radial velocity signature

as it periodically blocks red-shifted and blue-shifted portions of the stellar disk.

The shape of the anomaly depends on the inclination of the host star’s spin axis,
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and as a result, the sky-projected spin-orbit misalignment (also referred to as

obliquity) may be determined (Winn et al., 2005). Nearly 100 hot Jupiters have

obliquity constraints, revealing a large population of aligned systems, but many

significantly misaligned systems, some of which are retrograde, or intriguingly

close to 90◦ (Simpson et al., 2011; Albrecht et al., 2012b; Addison et al., 2013).

At present, warm Jupiter stellar obliquities are mostly un-probed, but the situ-

ation is expected to change in the coming years, enabled, for example, by TESS

mission discoveries amenable to follow-up radial velocity observations.

High-eccentricity migration is a natural mechanism for producing large stel-

lar obliquities. Alongside the extreme eccentricities generated (as required to

induce orbital decay), planetary inclinations are frequently excited as well. Per-

haps even more importantly, spin-orbit coupling between the migrating planet

and oblate host star can lead to large obliquity excitation. The amount of an-

gular momentum stored in the planetary orbit usually exceeds (or at least is

comparable to) that of the host star. The direction of the stellar spin may thus

be drastically altered under some circumstances due to torques from the planet.

The complex, and often chaotic spin-orbit dynamics that ensue often play the

dominant role in determining final obliquities (Storch et al., 2014; Storch & Lai,

2015; Storch et al., 2017). In contrast, disk-driven migration predicts low stel-

lar obliquities, provided that the disk is aligned with the stellar spin axis. As

a result, hot Jupiters with large stellar obliquities are traditionally attributed to

formation through a high-eccentricity migration channel.

However, this elegant paradigm for inferring hot Jupiter migration histo-

ries using stellar obliquities is complicated by several factors. For example,

low obliquities do not necessarily imply a disk migration history, because tides
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raised by the planet on the host star may erase initially large obliquities. In-

deed, a well-known correlation between obliquities and stellar effective tem-

peratures exists, with hot Jupiters orbiting cool stars having low obliquities and

hot Jupiters orbiting hot stars tending to have high obliquities (Winn et al., 2010,

2017; Muñoz, & Perets, 2018). This trend is qualitatively consistent with tidal re-

alignment in systems with cool host stars due to convective envelopes, although

note that the tidal realignment scenario suffers from some uncertainties and in-

consistencies (e.g. Lai, 2012). As another complication, various works have in-

vestigated the possibility of tilting the protoplanetary disk itself relative to the

stellar spin axis. Such primordial misalignments may allow for in-situ forma-

tion or disk-migration to result in high obliquities, albeit with varying degrees

of success (Bate et al., 2010; Foucart & Lai, 2011; Lai et al., 2011; Batygin, 2012;

Batygin & Adams, 2013; Lai, 2014; Spalding & Batygin, 2014; Fielding et al.,

2015; Zanazzi & Lai, 2018). Given these results, exactly what obliquities inform

us about planetary migration history is not obvious.

Besides hot Jupiter obliquities, another observational feature in the sam-

ple of close-in giant planets is a substantial population of eccentric warm

Jupiters. Many different mechanisms have been proposed in exciting warm

Jupiter eccentricities. Some mechanisms involve eccentricity excitation after for-

mation/arrival at a short-period orbit, such as planet scattering, planet-disk in-

teractions, or secular perturbations. A major proposed explanation for warm

Jupiter eccentricities is high-eccentricity migration (Dong et al., 2014; Dawson

& Chiang, 2014; Petrovich & Tremaine, 2016). In the context of high-eccentricity

migration, warm Jupiters are caught in the act of inward migration, eventually

to become hot Jupiters on circular orbits. However, although high-eccentricity

migration can readily form hot Jupiters, it suffers from some difficulties and
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observational inconsistencies in forming warm Jupiters, and eccentricity excita-

tion following formation/arrival at sub-AU distances may be more promising

in explaining the observations.

Together, these two observational features of close-in giant planets (hot

Jupiter obliquities and warm Jupiter eccentricities), constitute the major motiva-

tion for the studies in this dissertation. The primary goal of this thesis is to better

understand the dynamical and migration histories of hot and warm Jupiters, by

studying a variety of processes for raising eccentricities and stellar obliquities.

A secondary theme of this dissertation involves stellar binaries. The existence

of close main-sequence stellar binaries present similar puzzles as close-in giant

planets. Short-period stellar binaries are thought to have previously undergone

migration, either due to tidal dissipation and circularization of an eccentric or-

bit, or within a gaseous disk. Similar to giant planets, several close stellar bi-

naries exhibit spin-orbit misalignments (Albrecht et al., 2009, 2014; Sybilski et

al., 2018); whether such spin-orbit misalignments are primordial or arose after

the binary formed is unknown. This dissertation considers two different mech-

anisms for raising obliquities in stellar binaries, starting with initially aligned

spin and orbital axes.

Most of this dissertation considers the secular (orbit-averaged) evolution of

hierarchical triple systems, consisting of an “inner binary” (a planet and host

star or a stellar binary), and a distant planetary or stellar companion orbiting

the center of mass of the inner system (referred to as the “outer binary”). Secular

perturbations allow the orbital eccentricities and/or inclinations to evolve, but

leave the semi-major axes unchanged. Several chapters of this dissertation focus

on a particular type of secular behavior, known as the Lidov-Kozai effect (Lidov,
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1962; Kozai, 1962). In this scenario, a highly inclined tertiary (& 40◦) causes the

eccentricity and inclination of the inner binary to periodically oscillate, often to

extreme values. Combined with additional physical ingredients, such as stellar

spin-orbit coupling and tidal dissipation allows for a rich variety of applications

in the context of giant planets and stellar binaries.

All of the studies in this dissertation involving hot and warm Jupiters ex-

plore the dynamical effects of one or more additional planetary companions, or

a binary stellar companion. Searches for both planetary and stellar companions

in observed hot and warm Jupiter systems have been conducted. Knutson et al.

(2014) searched for radial velocity signatures from distant companions in sys-

tems known to host hot Jupiters, and estimated a companion occurrence rate

of ∼ 50% (corrected for sample incompleteness), for companion masses in the

range ∼ 1 − 13MJ and separations ∼ 1 − 20 AU. By direct imaging, Ngo et

al. (2015) performed a similar survey for stellar mass companions, and found

an occurrence rate of 48 ± 9% for companions at separations ∼ 50 − 2000 AU;

this is larger than 24%, the fraction of binaries (of the same separation range)

among solar-type field stars (Raghavan et al., 2010). Taken together, Ngo et

al. (2015) suggested a total companion fraction (including stars and planets) of

∼ 70% for systems hosting hot Jupiters. Using a combination of adaptive optics

imaging and radial velocity, Wang et al. (2015) searched for stellar companions

in systems containing Kepler Objects of Interest, focusing on gas giant planets

with orbital periods ranging from a few days to hundreds of days. They found

that the stellar multiplicity fraction of companions with separations between 20

and 200 AU is a factor of ∼ 2 higher for stars hosting a giant planet, compared

to a control sample with no planet detections. Focusing on giant planet com-

panions to hot, warm, and cold Jupiters, Bryan et al. (2016) found companion
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occurrence rates of 50% for warm Jupiters and up to 80% for hot Jupiters. In ad-

dition, there is a growing number of systems with well-characterized orbits for

the companion, especially for warm Jupiters (see, e.g. Table 1 of Antonini et al.,

2016, for a recent compilation of warm Jupiters with external companions). Col-

lectively, these works demonstrate that distant external companions to close-in

giant planets are common, highlighting the importance of the dynamical studies

presented in this dissertation.

Next, I provide a brief summary of each chapter.

Chapter 2 studies high-eccentricity migration of giant planets in stellar bi-

nary systems. An inclined stellar perturber may periodically excite the eccen-

tricity (through Lidov-Kozai cycles) of a planet initially located at several AU

from its host star, leading to spin-orbit coupling and tidal dissipation during

pericenter passages. Together, these physical effects may lead to inward mi-

gration and formation of a hot Jupiter with a misaligned orbit with respect to

the host star’s spin axis. I conduct an extensive population synthesis study,

including the quadrupole and octupole gravitational potential from the stellar

companion, mutual precession of the host stellar spin axis and planet orbital

axis, tidal dissipation in the planet, and stellar spin-down of the host star due to

magnetic braking. I consider a range of planet masses and initial orbital archi-

tectures, different properties for the host star, and varying degrees of tidal dis-

sipation. The fraction of systems that result in hot Jupiters depends on planet

mass and stellar type. Based on the observed occurrence rate of hot Jupiters,

and the estimated occurrence rate of giant planets and stellar binaries, I deduce

that Lidov-Kozai cycles from stellar companions may have produced at most

∼ 10% − 20% of the observed hot Jupiters. This mechanism does not produce
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any appreciable numbers of warm Jupiters, due to extremely rapid inward mi-

gration once the planet has reached sub-AU distances from the host star. The

final distribution of stellar obliquities depends somewhat on stellar and plane-

tary masses, but usually exhibits a distinct bimodal structure.

Chapter 3 studies a mechanism for exciting stellar obliquities for systems

hosting a close-in planet (either a hot or warm Jupiter) with an external, mod-

estly inclined companion. Spin-orbit misalignment may be excited due to a

secular resonance, occurring when the precession rate of the stellar spin axis

(driven by the inner planet) becomes comparable to the nodal precession rate of

the inner planet (driven by the companion). Due to the spin-down of the host

star via magnetic braking, this resonance may be achieved during the star’s

main-sequence lifetime for a wide range of planet masses and orbital architec-

tures. Obliquity excitation is accompanied by a decrease in mutual inclination

between the inner planet and perturber, and can thus erase high inclinations.

For hot Jupiters, the stellar spin axis is strongly coupled to the orbital axis, and

obliquity excitation by a giant planet companion requires a strong perturber,

usually located within 1-2 AU. For warm Jupiters, the spin and orbital axes

are more weakly coupled, and the resonance may be achieved for distant giant

planet perturbers (at several to tens of AU). Since warm Jupiters have a high oc-

currence rate of distant planetary companions with appropriate properties for

resonant obliquity excitation, stellar obliquities in warm Jupiter systems may be

common, particularly for warm Jupiters orbiting cool stars that have undergone

significant spin-down.

In Chapter 4 I examine the possibility of forming eccentric warm Jupiters

due to secular interactions with exterior giant planet companions. Starting with
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a warm Jupiter in a circular orbit (consistent with either in-situ formation or

disk migration), I quantify the necessary conditions (in terms of the eccentric-

ity, semi-major axis and inclination) for external perturbers of various masses to

secularly raise warm Jupiter eccentricities. Eccentricity growth may arise from

a highly inclined companion (through Lidov-Kozai cycles), or from an eccen-

tric coplanar or low-inclination companion (through apsidal precession reso-

nances). I also consider the sample of eccentric warm Jupiters with character-

ized external giant planet companions, and for each system, identify the range

of mutual inclinations needed to generate the observed eccentricity. For most

systems, I find that relatively high inclinations (typically & 50◦) are needed so

that Lidov-Kozai cycles are induced; the observed outer companions are typi-

cally not sufficiently eccentric to generate the observed inner planet eccentric-

ities in a low-inclination configuration. The results of this chapter place con-

straints on possibly unseen external companions to eccentric warm Jupiters.

Observations that probe mutual inclinations of giant planet systems will help

clarify the origin of eccentric warm Jupiters and the role of external compan-

ions.

Chapter 5 considers a non-secular avenue of forming eccentric warm

Jupiters, due to in-situ formation of several unstable giant planets in nearly cir-

cular orbits, followed by planet-planet scattering. Similar to Chapter 4, this

setup is consistent with either in-situ formation or disk migration. Most previ-

ous N-body scattering experiments have focused on “cold” Jupiters at several

AU, where scattering results in ejections, efficiently exciting the eccentricities

of surviving planets. In contrast, scattering at sub-AU distances results in a

mixture of collisions and ejections, so that the final eccentricities of surviving

planets is unclear. I conduct scattering experiments for a range of planet masses
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and initial spacing, including the effects of general relativistic apsidal preces-

sion, and systematically catalogue the scattering outcomes and properties of

surviving planets. Scattering produces comparable numbers of one-planet and

two-planet systems, and I compare the properties of these systems with ob-

served WJs. Two-planet systems arise exclusively through planet-planet col-

lisions, tend to have low eccentricities/inclinations, quite compact configura-

tions, and are inconsistent with many of the observed WJs with characterized

external companions. One-planet systems arise through a combination of ejec-

tions and collisions, resulting in much higher eccentricities. The observed ec-

centricity distribution of solitary warm Jupiters is consistent with roughly half

or more of systems having undergone in-situ scattering, and the remaining ex-

periencing a quiescent history.

Motivated by observed stellar binaries with a range of eccentricities and

spin-orbit misalignments, Chapter 6 studies the secular spin-orbit evolution of

stellar triples. If the tertiary is inclined with respect to the inner binary, Lidov-

Kozai cycles in concert with spin-orbit coupling may occur, leading to eccentric-

ity excitation, and under some circumstances, spin-orbit misalignment. I derive

the requirements that the tertiary companion must satisfy in order to raise the

eccentricity and obliquity of the inner binary. Through numerical integrations

of the secular octupole-order equations of motion, coupled with the spin pre-

cession of the oblate primary star due to the torque from the secondary, I obtain

a simple, robust condition for producing spin-orbit misalignment in the inner

binary: In order to excite appreciable obliquity, the precession rate of the stel-

lar spin axis must be smaller than the orbital precession rate due to the tertiary

companion. This yields quantitative requirements on the mass and orbit of the

tertiary. I also present new analytic expressions for the maximum eccentricity
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and range of inclination allowing eccentricity excitation (the “Lidov-Kozai win-

dow”) for stellar triples with arbitrary masses, and including the non-Keplerian

potentials introduced by general relativity, stellar tides and rotational bulges.

The results of this chapter can be used to place constraints on unobserved ter-

tiary companions in binaries that exhibit high eccentricity and/or spin-orbit

misalignment, and will be helpful in guiding efforts to detect external compan-

ions around stellar binaries. As an application, I consider the eclipsing binary

DI Herculis in which both the primary and secondary have ∼ 90◦ sky-projected

obliquities, and identify the requirements that a tertiary companion must satisfy

to produce the observed misalignment.

In Chapter 7 I discuss another mechanism for exciting stellar obliquities, due

to the presence of a circumbinary disk. An inclined disk introduces precession

of the binary orbital axes around the disk angular momentum axis; meanwhile

the oblate stars themselves experience torques and precess around the binary

orbital axis. As the disk disperses, the system may be trapped into a spin-orbit

resonance, causing the obliquity to grow to large values. In some circumstances,

the obliquities may approach 90◦. I identify the the disk and binary properties

required for large obliquity growth, and apply the problem to the eclipsing bi-

nary DI Herculis, finding that the large observed obliquities may have been

generated by a massive circumbinary disk (of order the binary mass).

In Chapter 8 I summarize and discuss some possible future avenues for re-

search.
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CHAPTER 2

FORMATION AND STELLAR SPIN-ORBIT MISALIGNMENT OF HOT

JUPITERS FROM LIDOV-KOZAI OSCILLATIONS IN STELLAR

BINARIES

2.1 Introduction

The growing sample of close-in giant planets (hot Jupiters, hereafter HJs) con-

tinues to yield surprises. These planets (with orbital periods of ∼ 3 days) could

not have formed in situ, given the large stellar tidal gravity and radiation fields

close to their host stars, and must have formed beyond a few AUs and migrated

inward. The recent discoveries of many HJs with orbital angular momentum

axes that are misaligned with respect to their host star’s spin axis (e.g. Hébrard

et al., 2008; Narita et al., 2009; Winn et al., 2009; Triaud et al., 2010; Albrecht et

al., 2012a; Moutou et al., 2011) has stimulated new studies on the dynamical

causes behind such configurations. The presence (or lack) of such misalignment

in an HJ system serves as a probe of the planet’s dynamical history, and can

potentially constrain the planet’s migration channel. Therefore, understanding

the dynamics behind spin-orbit misalignments is an important endeavor.

HJ systems with low spin-orbit misalignments are commonly thought to

have arisen from smooth disk-driven migration, thereby preserving an initially

low stellar obliquity. In contrast, systems with high misalignments must have

This chapter is adapted from Anderson et al. (2016)
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undergone a more disruptive high-eccentricity migration, in which the eccen-

tricity becomes excited to a large value, with subsequent orbital decay due to

dissipative tides raised on the planet by the host star. This assumption has

been challenged recently with the suggestion of a “primordial misalignment”

(Bate et al., 2010; Foucart & Lai, 2011; Lai et al., 2011; Thies et al., 2011; Batygin,

2012; Batygin & Adams, 2013; Lai, 2014; Spalding & Batygin, 2014; Fielding et

al., 2015), in which the protoplanetary disk itself becomes tilted with respect to

the stellar spin and planets subsequently form and smoothly migrate within the

misaligned disk, resulting in close-in planets with large stellar obliquities. Col-

lectively, these works show that much remains to be done in disentangling the

various possible dynamical histories of HJs.

High-eccentricity migration requires either one or more additional planets

in the system, or the presence of a stellar binary companion. In the former case,

the eccentricity excitation can be caused by strong planet-planet scatterings (Ra-

sio & Ford, 1996; Chatterjee et al., 2008; Ford & Rasio, 2008; Jurić & Tremaine,

2008), and various forms of secular interactions, such as secular chaos with at

least three giant planets (Wu & Lithwick, 2011) and interactions between two

modestly eccentric coplanar planets (Petrovich, 2015a), or, most likely, a com-

bination of both (Nagasawa et al., 2008; Beaugé & Nesvorný, 2012). In the case

of a stellar companion, high eccentricity is achieved from “Lidov-Kozai” (LK)

oscillations (Lidov, 1962; Kozai, 1962), in which an inclined stellar companion

pumps up the planet’s eccentricity to values close to unity; during the brief

high eccentricity phases, dissipative tides within the planet cause orbital decay

and inward migration, eventually resulting in a planet with an orbital period

of a few days (e.g. Wu & Murray, 2003; Fabrycky & Tremaine, 2007; Naoz et al.,

2012; Petrovich, 2015b). Note that LK oscillations with tidal dissipation from
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stellar companions have also been invoked to explain the existence of tight in-

ner binaries in stellar triple systems (e.g. Mazeh & Shaham, 1979; Eggleton &

Kiseleva-Eggleton, 2001; Fabrycky & Tremaine, 2007; Naoz & Fabrycky, 2014).

To assess the feasibility of HJ formation from the dynamical effects of distant

perturbers, searches for both planetary and stellar companions in HJ systems

have been conducted. Knutson et al. (2014) searched for radial velocity signa-

tures from distant companions in systems known to host HJs, and estimated a

companion occurrence rate of ∼ 50% for HJ systems (corrected for sample in-

completeness), for companion masses in the range ∼ 1− 13MJ and separations

∼ 1 − 20 AU. By direct imaging, Ngo et al. (2015) performed a similar survey

for stellar mass companions, and found an occurrence rate of 48 ± 9% for com-

panions at separations ∼ 50 − 2000 AU; this is larger than 24%, the fraction of

binaries (of the same separation range) among solar-type field stars (Raghavan

et al., 2010), suggesting that the presence of a stellar companion increases the

likelihood of HJ formation. Taken together, Ngo et al. (2015) suggested a total

companion fraction (including stars and planets) of ∼ 70% for systems hosting

HJs. Using a combination of adaptive optics imaging and radial velocity, Wang

et al. (2015) searched for stellar companions in systems containing Kepler Ob-

jects of Interest, focusing on gas giant planets with orbital periods ranging from

a few days to hundreds of days. They found that the stellar multiplicity fraction

of companions with separations between 20 and 200 AU is a factor of∼ 2 higher

for stars hosting a giant planet, compared to a control sample with no planet de-

tections. Since many of the objects in their sample are HJs, this highlights the

potential role of companion stars in the formation of close-in giant planets.

Despite these optimistic companion fractions, some aspects of HJ formation
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via LK oscillations remain problematic. Assuming steady-state formation of

HJs, high-eccentricity migration implies the presence of giant planets at wide

orbital separations and large eccentricities, with a ∼ several AU and e & 0.9

(“super-eccentric migrating Jupiters,” Socrates et al., 2012). However, this class

of planets is not observed (Dawson et al., 2015). Whether this apparent lack

of ultra-eccentric giant planets is due to the majority of HJs being formed from

disk-driven migration, or whether our understanding of high-eccentricity mi-

gration needs to be revised remains to be determined. In addition, the discov-

ery that a significant fraction of HJs have giant planet companions at a few AU’s

(Knutson et al., 2014), including a number of systems with full orbit solutions

for the companions (e.g. Feng et al., 2015; Becker et al., 2015; Neveu-VanMalle et

al., 2015), and the observed stellar-metallicity trend of giant planet eccentricities

(Dawson & Murray-Clay, 2013), suggest that LK oscillations driven by stellar

companions may not account for the majority of the observed HJ population.

Regardless, these issues clearly highlight the need for a better understanding of

all channels of HJ formation.

In this paper, we focus on HJ formation in stellar binaries through LK os-

cillations with tidal dissipation, and present the results of a large-scale popula-

tion synthesis. Initial population studies of HJ formation by the LK mechanism

included the leading order (quadrupole) gravitational potential of the binary

companion on the planet’s orbit (Fabrycky & Tremaine, 2007; Wu et al., 2007;

Correia et al., 2011). Naoz et al. (2012) incorporated the octupole potential of

the binary (Ford et al., 2000), and showed that the octupole terms could alter

the outcome of the population synthesis (e.g., they claimed that the efficiency of

HJ production can be significantly increased due to increases in the maximum

eccentricity). Taking a slightly different approach, Petrovich (2015b) conducted
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a thorough octupole-level population synthesis study, focusing on the steady-

state distributions of the planet’s orbital elements. He showed that the octupole

potential leads to a significant increase in the fraction of tidally disrupted plan-

ets. Both Naoz et al. (2012) and Petrovich (2015b) have presented results for the

distribution of the stellar obliquities of HJs formed in this scenario, showing a

broad spread in the spin-orbit misalignment angles (from∼ 20◦ to∼ 140◦). Thus

far, all population studies have focused on a single planet mass (1MJ ) and lim-

ited stellar spin properties. However, in a recent paper (Storch et al., 2014), we

showed that gravitational interaction between the planet and its oblate host star

can lead to chaotic evolution of the stellar spin axis during LK cycles, and this

evolution depends sensitively on the planet mass and stellar rotation period.

The chaotic spin dynamics arises from secular spin-orbit resonances and related

resonance overlaps (Storch & Lai 2015). In the presence of tidal dissipation, the

complex spin evolution can leave an imprint on the final spin-orbit misalign-

ment angles. Thus, the result of Storch et al. (2014) shows that the stellar spin

properties and the planet mass can have a strong effect on the distribution of

stellar obliquities in HJ systems produced by the LK mechanism. The goal of

the present paper is to expand upon this previous work by running a large en-

semble of numerical simulations with varying planet masses and stellar mass

and spin properties. We perform a thorough survey of the parameter space and

examine a range of planetary semi-major axes, binary separations, inclinations,

and eccentricities. We show that, not only the spin-orbit misalignments are af-

fected by stellar types and planet masses, but also the various outcomes of the

planets (HJ formation and tidal disruption) are strongly influenced by the prop-

erties of the planets and host stars. We also present a number of new analytical

calculations and estimates to help understand our numerical population syn-
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thesis results.

This paper is organized as follows. In Section 2.2, we describe the problem

setup and present the secular equations of motion that govern the evolution of

the system. Section 2.3 presents several analytical results for understanding the

dynamics of the planet’s orbit and stellar spin evolution – these results will be

useful for interpreting the numerical calculations of later sections. In Section 2.4,

we investigate the properties of the stellar spin evolution, and illustrate the var-

ious possible paths of generating spin-orbit misalignments. Section 2.5 presents

our population synthesis calculations. We first discuss results (with and without

octupole effects) for a given value of binary separation and initial planet semi-

major axis (Sections 2.5.2-2.5.3; Table 2). The most general population synthesis

results are presented in Sections 2.5.4-2.5.5 (Table 3). We conclude in Section 2.6

with a summary of results and discussion of their implications.

2.2 Formulation

We consider a hierarchical triple system, consisting of an inner binary (host star

and planet) of masses M? and Mp, with a distant, inclined outer (stellar) com-

panion Mb. The planet and binary companion have semi-major axes a and ab

respectively, with a/ab � 1. We include the secular gravitational perturbations

on the planet from the outer companion to octupole order in the disturbing po-

tential, along with spin-orbit coupling between the oblate host star and planet,

tidal dissipation within the planet, and periastron precession due to various

short-range forces (General Relativity, and rotational and tidal distortions of the

planet). We ignore the perturbations from the inner binary (M? and Mp) on the
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outer binary (M? and Mb). The planetary orbit is characterized by the unit vec-

tors (L̂, ê), where L̂ is normal to the orbital plane (in the direction of the angular

momentum vector L) and ê is in the direction of the eccentricity vector e. Sim-

ilarly, the orbit of the outer binary is characterized by the unit vectors (L̂b, êb).

The invariant plane is determined by the outer binary angular momentum axis

L̂b. The secular equations of motion for the planetary orbit take the forms

dL

dt
=
dL

dt

∣∣∣∣
LK

+
dL

dt

∣∣∣∣
SL

+
dL

dt

∣∣∣∣
Tide

, (2.1)

and
de

dt
=
de

dt

∣∣∣∣
LK

+
de

dt

∣∣∣∣
SL

+
de

dt

∣∣∣∣
SRF

+
de

dt

∣∣∣∣
Tide

, (2.2)

where we are including contributions from the binary companion that give rise

to Lidov-Kozai (LK) oscillations, spin-orbit coupling between the host star spin

S? and L (SL), dissipative tides (Tide) within the planet, and periastron preces-

sion due to short-range forces (SRFs). Explicit forms for each term are given in

Appendix A.

Note that the “LK” term from the binary companion consists of two pieces:

a quadrupole term, and an octupole term. The quadrupole has a characteristic

timescale for LK oscillations tk, given by

1

tk
=

Mb

Mtot

a3

a3
b,eff

n =

(
2π

106yr

)
M̄bā

3/2

M̄
1/2
tot ā

3
b,eff

, (2.3)

where ab,eff ≡ ab
√

1− e2
b , and n =

√
GMtot/a3 is the planetary mean motion.

The octupole term has a relative “strength” εoct (compared to the quadrupole

contribution), given by

εoct =
M? −Mp

M? +Mp

a

ab

eb
1− e2

b

. (2.4)

(See Table 2.1 for a summary of various physical quantities and their normalized

forms used throughout the paper.) In terms of the unit vector L̂, the effect of the
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binary companion is to induce precession of L̂ around L̂b, with simultaneous

nutation. The rate of change of L̂ due to the quadrupole potential of the binary

companion is given by

ΩL =

∣∣∣∣∣dL̂dt
∣∣∣∣∣
LK,Quad

=
[
(Ωpl sin θlb)2 + θ̇2

lb

]1/2
,

(2.5)

where Ωpl = Ω̇, the precession rate of the classical orbital node Ω, and θlb (de-

fined as cos θlb = L̂ · L̂b) is the angle between the planet orbital axis L̂ and the

binary axis L̂b. The first term in Eq. (2.5) represents precession of L̂ around the

binary axis L̂b, and the second term represents nutation of L̂. An approximate

expression for ΩL as a function of e and θlb is (see Appendix)

ΩL '
3(1 + 4e2)

8tk
√

1− e2
| sin 2θlb|. (2.6)

(Note that Eq. (2.6) is exact at e = 0 and the maximum eccentricity.) At zero

eccentricity the expression becomes

ΩL|e=0 =
3

4tk
cos θlb sin θlb

' 4.71× 10−6yr−1 M̄bā
3/2

M̄
1/2
tot ā

3
b,eff

cos θlb sin θlb. (2.7)

2.2.1 Spin Evolution due to Stellar Quadrupole

The oblate host star has angular momentum S? = I?Ω?Ŝ?, where I? = k?M?R
2
?

is the moment of inertia, with k? ' 0.1 for a solar-type star (Claret & Gimenez,

1992), Ω? is the stellar spin frequency (with period P? = 2π/Ω?), and Ŝ? = S?/S?

is the unit vector along the spin axis. The stellar rotational distortion generates

a quadrupole moment, thus introducing a torque between the star and planet.
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Table 2.1: Definitions of variables, along with the canonical value used in this
chapter (if applicable), and dimensionless form.
Quantity Dimensionless/Normalized Form

Vector Quantities
Planet orbital angular momentum L .....
Planet eccentricity vector e .....
Binary orbital angular momentum Lb .....
Binary eccentricity vector eb .....
Stellar spin angular momentum S? .....
Planetary spin angular momentum Sp .....
Physical Properties
Stellar mass M? M̄? = M?/M�
Stellar radius R? R̄? = R?/R�
Planet mass Mp M̄p = Mp/MJ

Planet radius Rp R̄p = Rp/RJ

Binary companion mass Mb M̄b = Mb/M�
Inner binary total mass Mtot ≡M? +Mp M̄tot = Mtot/M�
Spin & Structure Properties
Spin-orbit angle θsl (defined by cos θsl = L̂ · Ŝ?) .....
Stellar moment of inertia constant k? (I? = k?M?R

2
?) k̄? = k?/0.1

Planet moment of inertia constant kp (Ip = kpMpR
2
p) k̄p = kp/0.25

Stellar rotational distortion coefficient kq? (see Sec. 2.2.1) k̄q? = kq?/0.05
Planet rotational distortion coefficient kqp (see Sec. 2.2.1) k̄qp = kqp/0.17
Stellar spin period P? = 2π/Ω? P̄? = P?/day
Planet spin period Pp = 2π/Ωp P̄p = Pp/day
Tidal Properties
Planet tidal Love number k2p k̄2p = k2p/0.37
Tidal lag time ∆tL .....
Tidal enhancement factor χ (∆tL = 0.1χsec) .....
Orbital Properties
Planet semi-major axis a ā = a/AU
Planet eccentricity e .....
Planet inclination θlb (relative to outer binary, defined by cos θlb = L̂ · L̂b) .....
Outer binary semi-major axis ab āb = ab/100AU
Outer binary eccentricity eb .....
Effective outer binary semi-major axis ab,eff ≡ ab

√
1− e2

b āb,eff = ab,eff/100AU

Orbital mean motion n =
√
GMtot/a3 .....

This results in mutual precession of S? and L around the total angular momen-

tum J = L + S? (we ignore the small contribution to J due to the planet spin,

see Section 2.3.3). The star also spins down via magnetic braking: we adopt

the Skumanich law (Skumanich, 1972), with dΩ?/dt ∝ −Ω3
?. The stellar spin

evolution thus has two contributions, and is given by

dS?
dt

=
dS?
dt

∣∣∣∣
SL

+
dS?
dt

∣∣∣∣
MB

= ΩpsL̂× S? − αMBI?Ω
3
?Ŝ?,

(2.8)

20



where the first term describes the precession of S? around L (SL), and the second

term describes the spin-down due to magnetic braking (MB), with the efficiency

parameter αMB. In this paper we set αMB = 1.5 × 10−14 yr to model solar-mass

(type G) stars, and αMB = 1.5× 10−15 yr to model more massive (1.4M�, type F)

stars, as in Barker & Ogilvie (2009). This is consistent with observed stellar rota-

tion periods, with massive stars spinning more rapidly on average (McQuillan

et al., 2014), and more sophisticated stellar spin-down models (see Bouvier 2013

for a review).

The precession frequency of S? around L, Ωps, is given by

Ωps = −3GMp(I3 − I1) cos θsl

2a3j3S?
= −3

2

kq?
k?

Mp

M?

R3
?

a3

Ω?

j3
cos θsl

' −1.64× 10−7yr−1 k̄q?M̄pR̄
3
?

k̄?P̄?M̄?ā3

cos θsl

j3
, (2.9)

where the stellar spin-orbit angle θsl is defined by cos θsl = L̂ · Ŝ?, j =
√

1− e2,

and the stellar quadrupole moment (I3 − I1) is related to the spin frequency

via (I3 − I1) = kq?M?R
2
?Ω̂

2
?. Here Ω̂? = Ω?(GM?/R

3
?)
−1/2 is the stellar rotation

rate in units of the breakup frequency, and kq? is a “rotational distortion coeffi-

cient” (we adopt the canonical value kq? = 0.05 in this paper; Claret & Gimenez

1992).2 The stellar quadrupole also affects the planet’s orbit through a backre-

action torque, and precession of the pericenter (see Section 2.4.3 and Appendix

A).

As discussed in Storch et al. (2014), qualitatively distinct types of behavior

for the stellar spin axis arise, depending on the ratio of the stellar spin precession

rate |Ωps| to the nodal precession rate due to the binary companion |ΩL| (see

Eqs. [6.35] and [2.5]):

2Note that kq? is related to the apsidal motion constant κ, the Love number k2, and the J2
parameter by kq? = 2κ/3 = k2/3 and J2 = kq?Ω̂2

?.
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If |Ωps| � |ΩL| throughout the LK cycle, the stellar spin axis effectively pre-

cesses around the binary axis L̂b, so that the angle between Ŝ? and L̂b is nearly

constant. We refer to this as the “non-adiabatic” regime.

On the other hand, if |Ωps| & |ΩL| throughout the LK cycle, the stellar spin

axis is strongly coupled to the evolution of the orbital axis. Two different types

of behavior can occur in this “adiabatic regime”: (i) The stellar spin axis Ŝ?

essentially follows the orbital axis L̂, with θsl ∼ constant. For systems that begin

with Ŝ? and L̂ aligned (θsl,0 = 0◦), the spin-orbit angle remains relatively small

(θsl . 30◦) throughout the evolution. (ii) The spin-orbit angle is initially small,

but gradually increases towards the end of the evolution when the planet semi-

major axis has decayed appreciably due to tidal dissipation. In this situation,

the final misalignment angle settles to a final value θsl,f < 90◦. We term this

behavior “adiabatic advection” and will discuss it in Section 2.4 (see also Storch

& Lai 2015).

Finally, if during the LK cycle, |Ωps| ∼ |ΩL|, secular resonances develop, and

overlapping resonances can lead to complex, and often chaotic behavior of the

stellar spin axis. The spin-orbit angle θsl may cross 90◦, and a wide distribu-

tion of final misalignment angles is possible. Note that θsl can also cross 90◦ in

the non-adiabatic regime, but the addition of secular resonances in the trans-

adiabatic regime leads to much more complex evolution than the non-adiabatic

regime.

To help characterize the dynamics, we introduce an “adiabaticity parame-

ter” A:

A ≡
∣∣∣∣Ωps

ΩL

∣∣∣∣ . (2.10)

This parameter will be used throughout the paper to help characterize the spin-
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orbit dynamics. In general, A is a strong function of eccentricity and time. At

the start of the evolution (so that e ≈ 0)

A0 ≡
∣∣∣∣Ωps

ΩL

∣∣∣∣
e=0

= 0.07
k̄q?M̄pM̄

1/2
tot R̄

3
?ā

3
b,eff

k̄?M̄?M̄bā9/2P̄?

∣∣∣∣ cos θsl,0

sin 2θlb,0

∣∣∣∣ . (2.11)

2.3 LK Migration and Stellar Spin Evolution: Analytical Re-

sults

Before presenting our detailed population synthesis calculations, we discuss

some general properties of LK migration and stellar spin evolution. These will

be useful for understanding the results of later sections. Readers interested in

the full population synthesis and observational implications are referred to Sec-

tion 2.5.

2.3.1 LK Oscillations: Range of Eccentricity and Freezing of

Oscillations

Figure 2.1 gives a “canonical” example of the formation of an HJ due to LK oscil-

lations with tidal dissipation. For simplicity, this example neglects the feedback

of the stellar spin on the orbit. Here we set the binary eccentricity eb = 0, so

that the octupole-level perturbation from the binary companion vanishes. The

planet starts with initial semi-major axis a0 = 1.5 AU, and eccentricity e0 = 0.01,

and then undergoes cyclic excursions to maximum eccentricity emax, with ac-

companying oscillations in the inclination θlb (recall that cos θlb = L̂ · L̂b), be-

tween the initial (maximum) θlb,0 = 85◦ and minimum (occurring at e = emax)
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θlb,max ≈ 53◦. Note that short-range forces (SRFs) cause θlb,max > 40◦ here, in con-

trast to planets subject only to LK oscillations (without SRFs). As the planetary

orbit decays, the range of eccentricity oscillations becomes smaller. The exam-

ple shows that before the oscillations freeze, emax is approximately constant in

time, while the minimum eccentricity emin steadily increases toward emax. Even-

tually, when a is sufficiently small, the LK oscillations freeze, and the planet

undergoes “pure” orbital decay/circularization governed by tidal dissipation,

at nearly constant angular momentum.

As is well recognized in previous work (e.g. Holman et al., 1997; Wu & Mur-

ray, 2003; Fabrycky & Tremaine, 2007; Liu et al., 2015), SRFs play an important

role in determining the maximum eccentricity emax in LK cycles. The range of

eccentricity oscillations during the LK migration can also be understood from

the effects of SRFs, as we discuss below. As in the example depicted in Fig. 2.1,

we ignore the stellar spin feedback on the planetary orbit, as well as octupole-

level perturbations from the binary companion.

In the absence of tidal dissipation, the evolution of the planetary orbit is

governed by two conservation laws. The first, which is related to the compo-

nent of the angular momentum along the binary axis, is the well-known “Kozai

constant”, given by

K = j cos θlb, where j =
√

1− e2. (2.12)

The second conserved quantity is the energy per unit mass, which in secular

form is given by (e.g. Fabrycky & Tremaine, 2007; Liu et al., 2015)

Φ = ΦQuad + ΦGR + ΦTide + ΦRot, (2.13)

where the subscripts “Quad”, “GR”, “Tide”, and “Rot” denote contributions

from the binary companion (to quadrupole order), General Relativity, static tidal
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Figure 2.1: Semi-major axis a (top), eccentricity (middle), and inclination θlb

(bottom) as functions of time, showing the evolution until the planetary orbit
has decayed and circularized (left panels, with logarithmic scale on the x-axis),
as well as a zoomed-in version showing the suppression of LK oscillations and
tidal decay (right panels, with linear scale on the x-axis). As the orbit decays,
the maximum eccentricity of each LK cycle is approximately constant, while
the minimum eccentricity steadily increases, until eventually the LK cycles are
completely suppressed due to the effects of short-range forces. The dashed line
shows that the angular momentum projected along the binary axis L̂b (defined
by Eq. [2.20]) is conserved throughout the evolution. Parameters are Mp = 5MJ ,
a0 = 1.5 AU, ab = 200 AU, eb = 0, θlb,0 = 85◦. The other parameters assume their
canonical values, as defined in Table 2.1.
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deformation of the planet, and the rotational deformation of the planet. In terms

of the planet’s eccentricity (e), inclination (θlb), and argument of pericenter (ω),

the energy (per unit mass) from the binary companion takes the form

ΦQuad =
Φ0

8

(
1− 6e2 − 3K2 + 15e2 sin2 θlb sin2 ω

)
, (2.14)

where

Φ0 =
GMba

2

a3
b,eff

. (2.15)

The remaining energy terms due to SRFs can be written as

ΦGR = −εGR
Φ0

j
,

ΦTide = −εTide
Φ0

15

1 + 3e2 + 3e4/8

j9
,

ΦRot = −εRot
Φ0

3j3
, (2.16)

where we have defined dimensionless parameters εGR, εTide and εRot that quan-

tify the “strengths” of the SRFs:

εGR ≡
3GM2

tota
3
b,eff

Mba4c2
' 0.03

M̄2
totā

3
b,eff

M̄bā4
, (2.17)

εTide ≡
15k2pM?Mtota

3
b,effR

5
p

MbMpa8

' 1.47× 10−7
M̄?M̄totā

3
b,effR̄

5
p

M̄bM̄pā8
, (2.18)

εRot ≡
3kqp

2
Ω̂2
p

Mtot

Mb

(
Rp

a

)2 (ab,eff

a

)3

' 8.48× 10−4k̄qp

(
Pp

1day

)−2 M̄totR̄
5
pā

3
b,eff

M̄pM̄bā5
. (2.19)

(see Table 2.1 for definitions of k2p and kqp).

With tidal dissipation included, the semi-major axis is no longer constant.

We expect that the first conservation law, Eq. (2.12) is replaced by

J =
√
a(1− e2) cos θlb =

√
aj cos θlb. (2.20)
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Figure 2.1 shows that J is indeed conserved to high precision throughout the

LK migration. With a 6= constant, the energy expression, Eq. (2.14) is no longer

conserved. However, since the timescale for tidal dissipation (see Section 2.3.2,

Eq. [2.32]) is much longer than the timescale for LK oscillations (Eq. [2.3]), the

energy is very nearly constant over a single LK cycle.

As seen from Fig. 2.1, during the oscillatory phase of the LK migration, the

maximum eccentricity of each LK cycle emax ≈ constant, while the minimum

eccentricity steadily increases, so that the range of eccentricity variation narrows

(see right panels of Fig. 2.1). The inclination at maximum eccentricity, θlb,max, is

also nearly constant. For given emax and θlb,max, the minimum eccentricity emin

can be determined using the two (approximate) conservation laws, giving

3

4
e2

min =
3

8
e2

max

(
2− 5 sin2 θlb,max

)
+

[
εGR

j
+
εTide

15j9

(
1 + 3e2 +

3e4

8

)
+
εRot

3j3

]∣∣∣∣∣
emax

emin

. (2.21)

Here we have used the fact that the maximum eccentricity occurs when ω = π/2

or 3π/2, while the minimum eccentricity occurs at ω = 0 or π (provided that ω

is in the circulating, rather than librating regime). For reasonable values of the

planetary rotation rate (see Section 2.3.3), the SRF effect due to the rotational

bulge can be neglected compared to the tidal effect.

We can now determine the condition for the suppression (freezing) of LK

oscillations. Since the freezing occurs at emax close to 1, it is more appropriate to

consider the freezing of j. For ∆j ≡ jmin−jmax =
√

1− e2
min−

√
1− e2

max � jmax,

we find that
∆j

jmax

≈ 15

8
sin2θlb,max

(
εGR

jmax

+
21

8

εTide

j9
max

)−1

. (2.22)

(Note that the subscript “max” indicates the value at maximum eccentricity.)
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As a decreases, both εGR and εTide increase rapidly, which leads to the decrease

of ∆j. The fact that θlb,max is nearly constant (see Fig. 2.1), along with conser-

vation of J (see Eq. [2.20]), together imply that jmax ∝ a−1/2. For εGR/jmax &

(21/8)εTide/j
9
max, or

jmax &

(
21εTide

8εGR

)1/8

= 0.245
R̄

5/8
p

M̄
1/8
p ā1/2

, (2.23)

the GR term dominates, and we have

∆j

jmax

' 0.1
M̄b

M̄2
? ā

2
b,eff

( a

0.3 AU

)4
(
jmax

0.2

)
sin2θlb,max. (2.24)

When equation (2.23) is not satisfied, the tidal term dominates, and we have

∆j

jmax

' 0.01
M̄bM̄p

M̄2
? ā

3
b,eff

( a

0.5 AU

)8
(
jmax

0.2

)9

sin2θlb,max. (2.25)

Figure 2.2 shows ∆j/jmax as a function of a using Eq. (2.22) (where jmax has

been calculated from Eq. [2.20]), for the same system parameters as depicted in

Fig. 2.1, and three values of θlb,0. We see that ∆j/jmax decreases with decreasing

a, as SRFs increasingly suppress the LK oscillations.

2.3.2 Migration Rate: Upper Limit and Estimate

For a given a and e, the orbital decay rate (using weak friction tidal theory) takes

the form (Alexander, 1973; Hut, 1981)(
1

a

da

dt

)
Tide

= − 1

ta

1

j15

[
f1(e)− j3f2(e)

Ωp

n

]
, (2.26)

where the dimensionless functions of eccentricity f1 and f2 are defined in

Eqs. (A.18) and (A.19). The timescale ta is given by

1

ta
= 6k2p∆tL

M∗
Mp

(
Rp

a

)5

n2

≈ 7.3× 10−21

yr
χk̄2p

M̄?M̄tot

M̄p

R̄5
p

ā8
, (2.27)
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Figure 2.2: Condition for freezing of LK oscillations, ∆j/jmax as a function of
a using Eq. (2.22) (where we assumed ∆j/jmax � 1), where jmax =

√
1− e2

max

has been calculated from Eq. (2.20), with the assumption that θlb,max ∼ θlb,0. We
have chosen three values of θlb,0, as labeled, and all other parameters the same
as in Fig. 2.1. As a decreases (so that εGR and εTide increase), SRFs limit the
eccentricity variation, causing ∆j to decrease.
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where ∆tL is the lag time, k2p is the tidal Love number, and we have introduced

a tidal enhancement factor χ (relative to Jupiter), defined such that ∆tL = 0.1χ

sec. Our canonical value is χ = 10. It is convenient to introduce the quantity

aF ≡ a(1− e2
max), (2.28)

because aF varies by at most ∼ 20% during the inward migration of a planet

undergoing LK cycles. Note that aF is approximately equivalent to the final

(“circularized”) semi-major axis of the planet. To produce HJs, we require aF .

0.05 AU (i.e. orbital periods less than ∼ 4 days).

For a given value of the planetary spin rate Ωp, the maximum decay rate

occurs for e = emax (see Section 2.3.3 for a discussion of our treatment of the

planetary spin). Setting Ωp ' 0 for simplicity, the maximum decay rate is∣∣∣∣1a dadt
∣∣∣∣
Tide,max

=
1

ta

f1(emax)

j15
max

≈ 2.52× 10−9

yr
χk̄2p

M̄totM̄?R̄
5
p

M̄pā1/2

( āF
0.05

)−15/2

.

(2.29)

Non-zero values of the planetary spin rate Ωp would slightly modify the numer-

ical coefficient in Eq. (2.29).

Eq. (2.29) overestimates the actual LK migration rate, since the planet spends

only a small fraction of time near high eccentricity during an LK cycle. We can

estimate the time spent in the vicinity of emax as follows. Neglecting SRFs, the

planet’s argument of pericenter ω evolves according to

dω

dt
=

3

4tk
√

1− e2

[
2(1− e2) + 5 sin2 ω(e2 − sin2 θlb)

]
. (2.30)

Near maximum eccentricity, ω centers around π/2 or 3π/2, with width of ∆ω ∼ 1

radian (see, e.g. Holman et al., 1997, Fig. 3). Thus, the second term in Eq. (2.30)

is of order unity and the first term is negligible, so that the time spent near emax
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can be approximated by

∆t(emax) ∼ tk
√

1− e2
max. (2.31)

Thus, the actual orbital decay rate during LK migration is roughly∣∣∣∣1a dadt
∣∣∣∣
Tide,LK

∼
∣∣∣∣1a dadt

∣∣∣∣
Tide,max

(1− e2
max)1/2

' 5.6× 10−10

yr
χk̄2p

M̄totM̄?R̄
5
p

M̄pā

( āF
0.05

)−7
(2.32)

(see also Petrovich 2015b for a more detailed exploration of the LK migration

rate). Since the main-sequence lifetime of a solar-type star is ∼ 1010 yr, inward

migration resulting in HJ formation requires that aF . 0.05 AU.

2.3.3 Evolution of Planet Spin During LK Cycles with Tidal

Friction

Similar to the spin axis of the host star, the spin axis of the oblate planet Ŝp

(where the spin angular momentum is Sp = SpŜp) precesses around the orbital

axis L̂ according to
dŜp
dt

= Ωprec,pL̂× Ŝp, (2.33)

where the precession rate Ωprec,p is given by

Ωprec,p = −3

2

kqp
kp

M?

Mp

R3
p

a3

Ωp

j3
cos θp

' −2.69× 10−4yr−1
k̄qpM̄?R̄

3
p

k̄pM̄pā3

cos θp
j3

, (2.34)

with cos θp = Ŝp · L̂ (see Table 1 for definitions and canonical values of all other

quantities). We can define a planetary “adiabaticity parameter”Ap,0 (analogous

to the stellar adiabaticity parameter A0, see Eq. [2.11]), where

Ap,0 ≡
∣∣∣∣Ωprec,p

ΩL

∣∣∣∣
e=0

' 57.1
k̄qpM̄?M̄

1/2
tot R̄

3
pā

3
b,eff

k̄pM̄pM̄bā9/2P̄p

∣∣∣∣ cos θp
cos θlb sin θlb

∣∣∣∣ . (2.35)
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Clearly, for all plausible parameters, Ap,0 � 1, provided that the planetary

obliquity θp is not too close to 90◦. The planetary spin axis is thus always in

the adiabatic regime (see Section 2.2.1), with the planetary spin orbit angle θp ≈

constant.

We thus treat the direction of the planetary spin axis as always being aligned

with the orbital axis L̂, and the spin magnitude Sp = kpMpR
2
pΩp evolves only

due to tidal dissipation. After averaging over the periastron precession (e.g.

Alexander, 1973; Hut, 1981; Correia et al., 2011), the evolution of Sp is governed

by the expression(
1

Sp

dSp
dt

)
Tide

= − 1

2ta

L

Sp

1

j13

[
j3f5(e)

Ωp

n
− f2(e)

]
, (2.36)

where f2 and f5 are functions of eccentricity, defined in Eqs. (A.19) and

(A.22). The magnitude of the orbital angular momentum evolves according to

(dL/dt)Tide = −(dSp/dt)Tide.

A fiducial example of the planetary spin behavior is shown in Fig. 2.3, for the

same parameters as in Fig. 2.1. The planet spin period is initialized to Pp = 10

hours, and exhibits complex behavior, as it tidally evolves while under the exter-

nal forcing of the binary companion. During the low-e phase of each LK cycle,

the planet spin magnitude remains nearly constant, and then undergoes a rapid

“jump” (with |∆Pp|/Pp � 1) during the high-e phases. After many LK cycles, a

state of near equilibrium is reached, so that the spin period at low eccentricity

returns to nearly the same value after the high-e “jump” (see Fig. 2.4). As the

LK cycles begin to be suppressed due to orbital decay, the range of eccentricity

narrows (see Section 2.3.1), and the spin period gradually decreases. Once the

LK cycles are completely suppressed, the spin period increases and eventually

settles to a final value Pp ' 38 hours, synchronized with the final orbital period
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of the planet.

We can understand the behavior of the planetary spin under the influence

of LK cycles as follows. The timescale for planetary spin variation due to tidal

dissipation is (see Eq. [2.36])

tspin =

∣∣∣∣∣SpṠp
∣∣∣∣∣ ∼ Sp

L
taj

13

' 2.9× 103yr
k̄p
k̄2pχ

M̄pā
15/2

M̄2
? M̄

1/2
tot R̄

3
p

(
Pp

1day

)−1(
j

0.1

)12

.

(2.37)

This is much less than the orbital decay circularization timescale due to tides,

tcirc ∼ taj
13, or the orbital decay time (∼ taj

15) for all values of a and e. There-

fore, in the absence of an external perturber (i.e. when the system is gov-

erned purely by tidal dissipation), the planetary spin reaches a state of pseudo-

synchronization, with

Ωp,eq = Ωp,pseudo =
f2(e)

j3f5(e)
n. (2.38)

The situation is very different when the planet undergoes LK oscillations

driven by an external perturber. The time the planet spends around eccentricity

e in each LK cycle is of order ∆tk ∼ tk
√

1− e2 (see Eqs. [2.3] and [2.31]). Note

that the spin evolution timescale tspin (see Eq. [2.37]) depends strongly on eccen-

tricity. During the low-eccentricity phase of the LK cycle, tspin � ∆tk, so that the

spin magnitude remains constant. However, during the brief high-eccentricity

phase, tspin can be comparable to ∆tk, and the planetary spin magnitude under-

goes a small “jump” ∆Ωp. Assuming |∆Ωp|/Ωp � 1, this jump can be calculated

from
∆Ωp

Ωp

' −
∫ tk/2

−tk/2

1

2taj13

L

Sp

[
j3f5(e)

Ωp

n
− f2(e)

]
dt, (2.39)

where e = e(t), and the time integration covers a single LK cycle centered

around the eccentricity maximum. On timescales much longer than tk but
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shorter than the orbital decay time, the spin rate approaches a constant value

Ωp,eq, the “Kozai spin equilibrium,” such that ∆Ωp = 0. For “canonical” system

parameters (Mp = 1MJ , a0 = 1.5AU, ab = 200AU), and varying initial inclina-

tion (corresponding to varying emax), we determine Ωp,eq by adjusting the initial

planetary spin rate, integrating for a single LK cycle, and iterating until ∆Ωp = 0

in Eq. (2.39). The results are depicted in Figure 2.5. We see that the Kozai spin

equilibrium differs from the pseudo-synchronized value at emax, with the ratio

Ωp,eq/Ωp,pseudo(emax) ≈ 0.8.

2.3.4 Limiting Eccentricity and Necessary Conditions for

Planet Migration and Disruption

When the octupole potential from the binary companion is neglected, the maxi-

mum eccentricity emax attained by the planet in LK cycles can be determined by

the conservation laws discussed in Section 2.3.1. If the initial eccentricity of the

planet is close to zero and the initial inclination is θlb,0, we find (Liu et al. 2015):

εGR

( 1

jmax

− 1
)

+
εTide

15

(1 + 3e2
max + 3

8
e4

max

j9
max

− 1
)

+
εRot

3

( 1

j3
max

− 1
)

=
9e2

max

8j2
max

(
j2

max −
5

3
cos2θlb,0

)
. (2.40)

The limiting eccentricity elim is achieved at θlb,0 = 90◦. For emax ' 1, we have

εGR

jlim

+
7εTide

24j9
lim

' 9

8
, (2.41)

where

jlim ≡ (1− e2
lim)1/2, (2.42)

and we have neglected the effect associated with the planetary rotational bulge

(since it is generally smaller than the tidal term).
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Figure 2.3: Planet spin period as a function of time, for the same parameters
shown in Fig. 2.1. For reference, we also show the variation of the orbital ec-
centricity 1 − e (top panel). The planet spin remains constant during the low-
eccentricity phase of each LK cycle, and undergoes a rapid “jump” during the
brief high-eccentricity phase. The bottom panel shows Pp over the entire evolu-
tion (until the LK cycles are suppressed and the semi-major axis decays to the fi-
nal value), and the inset shows a zoomed-in portion of the spin evolution, as in-
dicated by the red-boxed region (0.32 Gyr . t . 0.42 Gyr). On timescales much
longer than tk, but shorter than the orbital decay time, the spin period reaches
“Kozai spin equilibrium” (see text). As the LK oscillations are suppressed (see
Section 2.3.1), the equilibrium spin period approaches the pseudo-synchronized
value (Eq. 2.38), drawn in light-grey in the inset panel.
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Figure 2.4: Same as Figure 2.3, but showing only three LK cycles, once the planet
spin has achieved the “Kozai spin equilibrium” (see text).
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Figure 2.5: “Kozai spin equilibrium rate” rate (Ωp,eq, solid curve), as a function
of emax, the maximum eccentricity attained in an LK cycle. For comparison, we
also plot the pseudo-synchronized rate at emax (Ωp,pseudo, dashed curve). We vary
the maximum eccentricity by varying the initial inclination θlb,0, and integrate
a set of simplified equations for a single LK cycle (accounting for pericenter
precession due to GR and static tides, but neglecting the precession due to plan-
etary rotation). We further ignore orbital decay. Parameters are Mp = 1MJ ,
a = 1.5AU, ab = 200AU, eb = 0.
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When the octupole potential is included, the “Kozai constant” K [Eq. (2.12)]

is no longer a constant of motion, thus Eq. (2.40) is not valid. Nevertheless,

Liu et al. (2015) show that the limiting eccentricity, as determined by Eq. (6.26)

still provides an upper limit to the achievable eccentricity in the LK cycles in

the presence of SRFs. The effect of the octupole potential is to make the planet

undergo occasional excursion into elim even when θlb,0 6= 90◦. In general, elim

can be attained for a range of θlb,0 centered around 90◦, with the range becoming

wider as the octupole parameter εoct increases (see Eq. [2.4]).

For a given set of system parameters (M?,Mb,Mp, Rp, a, ab, eb), Eq. (6.26)

determines the limiting eccentricity (or limiting periastron distance ap,lim ≡

a[1− elim])

0.021
M̄2

? ā
3
b,eff

M̄bā
1/2
p,limā

3.5
+ 1.89× 10−9

M̄2
? ā

3
b,effR̄

5
p

M̄bM̄pā4.5
p,limā

3.5
=

9

8
, (2.43)

where we have used Eqs. (2.17) and (2.18). For jlim & jlim,c, where

j2
lim,c =

(
7εTide

24εGR

)1/4

= 3.46× 10−2 R̄
5/4
p

M̄
1/4
p ā

, (2.44)

the GR effect dominates SRFs, and we have

j2
lim = 1− e2

lim = 7.1× 10−4

(
M̄2

? ā
3
b,eff

M̄bā4

)2

. (2.45)

For jlim ≤ jlim,c, tides dominate the SRF, and we have

j2
lim = 1− e2

lim = 2.25× 10−2

(
M̄2

? R̄
5
pā

3
b,eff

M̄bM̄pā8

)2/9

. (2.46)

As discussed in Section 2.3.2, for a planet to migrate, its pericenter distance

ap must be sufficiently small, so that tidal dissipation can damp and circularize

the orbit within a few Gyrs. We therefore require ap,lim . ap,crit, where ap,crit is the

maximum pericenter distance needed to circularize the orbit within a specified

38



time frame. Note that ap,crit depends on the tidal dissipation strength, and there-

fore is a fuzzy number. However, for reasonable tidal dissipation strengths, and

circularization times of a few Gyr or less, ap,crit ' 0.025 AU (so that aF . 0.05

AU). Setting ap,lim . ap,crit, a necessary condition for LK migration is

āb,eff .2.03 ā7/6
( ap,crit

0.025AU

)1/6
(
M̄b

M̄2
?

)1/3

×

[
1 + 0.23

R̄5
p

M̄p

( ap,crit

0.025AU

)−4
]−1/3

.

(2.47)

Note that this is a necessary, but not sufficient condition, because as discussed

above, the outer binary must be sufficiently inclined in order for a planet to

achieve elim.

The planet is tidally disrupted if the planet’s periastron distance is less than

the tidal radius (e.g. Guillochon et al., 2011)

rTide = 2.7fRp

(
M?

Mp

)1/3

, (2.48)

where f ∼ 1 (we set f = 1 for all calculations in this paper). Setting ap,lim ≤ rTide,

we obtain a necessary condition for tidal disruption:

āb,eff ≤ 1.81 ā7/6(fR̄p)
1/6

(
M̄?

M̄p

)1/18(
M̄b

M̄2
?

)1/3

(2.49)

×

(
1 +

3.54R̄pM̄
1/3
p

f 4M̄
4/3
?

)−1/3

.

Note that since the tidal disruption radius (Eq. [2.48]) is not a precisely defined

quantity (the coefficient f has uncertainties, and it depends on the planetary

mass-radius relation, which can vary widely for giant planets), there are associ-

ated uncertainties in the disruption condition in Eq. (2.49).

Figure 2.6 delineates the parameter space in terms of the initial planet semi-

major axis a0 and effective binary separation ab,eff for migration and disruption,
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as determined from Eqs. (2.47) and (2.49) for various planetary masses. For a

given planet mass, the parameter space can be divided into a “Migration Im-

possible” zone, a “HJ Formation” zone, and a “Disruption Possible” zone. Mi-

gration is possible below the solid line when the planet is sufficiently inclined

relative to the binary, while below the dashed line, tidal disruption is possible.

The “HJ Formation” zone, the region between the solid and dashed lines, nar-

rows substantially with decreasing planet mass, implying that HJ production

efficiency should decline with decreasing planet mass. Finally, note that while

HJs are never able to form above the solid line, they do occassionally form below

the dashed line, for systems where the mutual inclination is not high enough to

result in tidal disruption. Therefore, while the upper boundary (solid line) of

the HJ formation zone is robust, the lower boundary is somewhat uncertain.

However, the vast majority of HJs will reside in the region between the solid

and dashed lines.

Further discussion of the planet migration and disruption fractions can be

found in Section 2.5.4.

2.3.5 Freezing of Spin-Orbit Angle

The evolution of the spin-orbit angle θsl is complex. Here we examine how θsl is

frozen into its final value near the end of the LK migration.

As shown in Storch & Lai (2015) (hereafter SL15), the dynamics of the stellar

spin axis Ŝ? relative to the planet’s orbital axis L̂ depends on three dimension-
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Figure 2.6: Boundaries in (a0, ab,eff) parameter space for migration (solid lines),
and tidal disruption (dashed lines). The migration and disruption boundaries
are determined by Eq. (2.47) (with ap,crit = 0.025 AU) and Eq. (2.49) (with f = 1)
for several planet masses (as indicated by the color). For each planet mass,
migration is impossible (for all initial planet-outer binary inclinations) above
the solid line, and tidal disruption is impossible above the dashed line. Below
the solid (dashed) line, migration (disruption) is possible (depending on the
binary inclination), but not guaranteed. HJ formation only occurs below the
solid line, and is usually, but not always, confined to the region between the
solid and dashed lines.
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less ratios

εβ = −Ωpl

α
sin θlb, (2.50)

εγ =
θ̇lb

α
, (2.51)

εψ = −Ωpl

α
cos θlb, (2.52)

where we have defined the function α via

Ωps = −α cos θsl, (2.53)

and the dimensionless parameter ε is defined by

ε =

∣∣∣∣Ωpl

α

∣∣∣∣
e=0

. (2.54)

The parameter ε is related to the “adiabaticity parameter” A0 [see Eq. (2.11)] by

ε = A−1
0 | cos θsl,0/ sin θlb,0|. In general β, γ, ψ are strong functions of time, with

the period given by the LK period of the eccentricity variation (when neglecting

the feedback effect of the stellar spin on the orbit and the dissipative effect).

They can be decomposed into various Fourier components, each giving rise to

a resonance (see SL15). Near the end of LK migration, the amplitude of the

eccentricity oscillation becomes small (see Section 2.3.1). So when θsl begins

to freeze, the dynamics of Ŝ? is dominated by the N = 0 (time-independent)

components (β̄ and ψ̄, with γ̄ = 0). Thus, the effective Hamiltonian for the

stellar spin axis is (see Eq. [53] of SL15)

H = −1

2
p2 + ε ψ̄ p− ε

√
1− p2 β̄ cosφ, (2.55)

where p = cos θsl and φ (the phase of precession of Ŝ? around L̂) are the conjugate

canonical variables.

Since H is time-independent, the range of variation of p can be derived from
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energy conservation. Suppose p = pF at φ = π/2. For ε� 1, we find

p ' pF −
εβ̄
√

1− p2
F

pF
cosφ. (2.56)

Thus the spread (full width) of θsl as φ circulates between 0 and 2π is

∆θsl '
2εβ̄

| cos θsl,F |
=

2

AF
, (2.57)

where

AF ≡
〈|Ωpl|〉

〈|Ωpl sin θlb|〉
. (2.58)

The bracket 〈...〉 in Eq. (2.58) indicates time averaging over the small “residual”

LK oscillations. If the eccentricity variation is “frozen” or has small amplitude,

then the averaging is unnecessary andAF is the same asA defined in Eq. (6.37).

Thus, in order for the spin-orbit angle to freeze at θsl,F to within ∆θsl (e.g., 2◦)

requires

A & 60

(
∆θsl

2◦

)−1

. (2.59)

2.4 Paths Toward Misalignment

In this section we present a series of numerical experiments to illustrate various

paths of spin-orbit evolution during LK migration. These will be useful for

understanding our population synthesis results of the final spin-orbit angles for

HJs in Section 2.5. The theoretical basis for these different evolutionary paths is

presented in Storch et al. (2017).
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2.4.1 Effects of Varying Stellar Spin Rate

To isolate the effects of the stellar spin dynamics, and highlight the importance

of the stellar spin properties on the final spin-orbit angle, we first ignore the

feedback of the stellar spin on the planetary orbit (thus ignoring the mutual

precession of S? and L). Possible types of evolution are illustrated in Figs. 2.7

and 2.8. In both figures, we vary the stellar spin period while keeping all other

system parameters constant. Figure 2.7 presents an example of chaotic spin

evolution: three closely spaced values of the stellar spin period result in very

different spin evolutions and final spin-orbit misalignments. Figure 2.8 presents

three different types of non-chaotic spin evolution, only two of which are able

to generate spin-orbit misalignment.

The leftmost panel (with P? = 30 days) of Fig. 2.8 (with θsl in the middle

row) shows an example of non-adiabatic spin behavior. Here, the spin-orbit

misalignment angle θsl evolves slowly, with step-like changes corresponding to

LK eccentricity maxima, during which the spin evolves the most rapidly. Since

the planet orbit changes much faster than the spin can respond, the spin axis

effectively precesses about the time average of the planet orbital angular mo-

mentum vector.

On the opposite end of the spectrum, the middle panel of Fig. 2.8 (with

P? = 7.07 days) is an example of adiabatic spin behavior. Here, the stellar spin

axis evolves quickly enough that it easily “keeps up” with the planet angular

momentum vector, and hence θsl is approximately conserved, making it diffi-

cult to generate misalignment.

The rightmost panel of Fig. 2.8 (with P? = 1.67 days) shows a more compli-
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cated variation of the adiabatic evolution, which we term “adiabatic advection”.

As discussed in detail in SL15, the adiabatic regime of stellar spin evolution is

governed by a set of resonances between the time-averaged spin precession rate

and the mean LK oscillation rate. Under certain conditions, it is possible for a

trajectory to become trapped inside one of the resonances. As tidal dissipation

acts to make the system even more adiabatic, the resonance moves in phase

space, dragging the trajectory with it and thus generating misalignment. We

discuss and clarify the mechanism of this phenomenon in Storch et al. (2017).

Fig. 2.9 presents final spin-orbit angles θsl,f for many different values of the

stellar spin period, for three different orbital evolutions (characterized by dif-

ferent initial inclinations θlb,0). This illustrates the role of the adiabaticity pa-

rameter A0 (see Eq. [2.11]) in determining which of the four types of evolution

the spin-orbit angle undergoes. For low values of A0, chaotic and regular non-

adiabatic behaviors are prevalent. For intermediate values, e.g. 10 . A0 . 100

in the rightmost panel, adiabatic advection dominates, with each of the striated

lines corresponding to adiabatic advection by resonances of different orders (see

Storch et al., 2017). For A0 & 100, stationary adiabatic behavior prevails. Thus,

A0 can be used as an indicator for the behavior of a system with a particular set

of initial conditions.

2.4.2 Effects of Varying Inclination

In this subsection we take a different tack and examine the effect of varying the

initial planet orbit inclination θlb, for different values of the stellar spin period

and the planet mass. As before, we continue to ignore the back-reaction torque

45



the star exerts on the planet orbit. Fig. 2.10 demonstrates that changing the

initial inclination effectively changes A0, and thus systems with different initial

inclinations can also exhibit the different behaviors shown in Figs. 2.7 and 2.8 of

Section 2.4.1. In particular, the three columns of Fig. 2.10 correspond to chaotic

evolution (left panels), adiabatic advection (middle panels), and an extreme case

of stationary adiabatic evolution (right panels).

In Fig. 2.11 we show the dependence of the final spin-orbit misalignment an-

gle on the initial inclination, for several combinations of planet mass and stellar

spin period. As expected, chaotic behavior occurs mainly at lower initial incli-

nations (less adiabatic – see the right two panels of Fig. 2.11). We note, however,

that despite spanning approximately the same range of A0, heavier planets are

much more likely to produce chaotic behavior than lower-mass planets - this

implies that A0 is not the only parameter governing the evolution of θsl (Storch

et al., 2017). Stationary adiabatic behavior manifests here as the “tail” of the

distributions at higher initial inclinations, e.g. between 88.5◦ and 90◦ in the

top left panel, and near 90◦ in the bottom right panel. The long stretches of

nearly-constant θsl,f present in the higher-mass (more adiabatic) panels are due

to adiabatic advection.

The non-adiabatic behavior regime shown in Fig. 2.8 (left panels) manifests

here as a bimodal split in θsl,f (see the left two panels of Fig. 2.11). This bi-

modality is the result of a bifurcation phenomenon that occurs at the moment

the system transitions from being non-adiabatic to being adiabatic (due to the

orbital decay from tidal dissipation). Before the transition, the system under-

goes wide 0−180◦ degree oscillations in θsl; after the transition, the system must

evolve adiabatically and be confined either above or below θsl = 90◦. The tran-
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sition between these two states is akin to a bifurcation. We illustrate this in

Fig. 2.12 by showing the time evolution of two trajectories with nearly identical

initial conditions. Unlike the previous chaotic examples shown (with positive

Lyapunov exponents) the trajectories in Fig. 2.12 do not quickly diverge, but

rather remain qualitatively similar while accumulating some phase difference.

This phase difference, if pronounced enough, leads to a bifurcation in the final

spin-orbit angle. We discuss this phenomenon in detail in Storch et al. (2017).

In summary, the evolution of the spin-orbit misalignment angle can proceed

in four distinct ways. (i) Chaotic. Neighboring spin trajectories diverge expo-

nentially and θsl,f is very sensitive to initial conditions. (ii) Regular non-adiabatic.

θsl initially undergoes wide, regular 0− 180◦ oscillations. After significant semi-

major axis decay has occurred, the evolution of θsl undergoes a bifurcation and

becomes confined either above or below 90◦ degrees. This leads to the bimodal-

ity seen in Fig. 2.11 (left panels). (iii) Stationary adiabatic. θsl is approximately

conserved and no misalignment can be generated. (iv) Adiabatic advection. The

phase space trajectory becomes trapped in a resonance and advected to higher

misalignments. θsl,f depends sensitively on the stellar spin period (Fig. 2.9, right

panel), but only weakly on the initial inclination (Fig. 2.11, right panels).

2.4.3 Effects of the Backreaction Torque from the Stellar

Quadrupole on the Orbit

All examples in Sections 2.4.1 and 2.4.2 have neglected the backreaction torque

from the stellar quadrupole on the planet’s orbit, in order to simplify the anal-

ysis of the spin-orbit dynamics. However, under some conditions, the backre-
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Figure 2.7: Examples of chaotic evolution for three values of the stellar spin
period (in days) as labeled, neglecting the feedback torque from the stellar
quadrupole on the orbit. Without feedback, the orbital evolution for each sys-
tem is identical (shown in the top panels), while the spin-orbit angle settles to
a final value that is highly sensitive to the initial conditions. The adiabaticity
parameter A is defined in Eq. (6.37). Parameters are Mp = 5MJ , a0 = 1.5 AU,
ab = 300 AU, eb = 0, θlb,0 = 87◦.

action torque can significantly affect the evolution of the spin-orbit misalign-

ment. In the following discussion, we show how including this torque affects

(and complicates) the dynamics, and delineate the parameter space where this

torque can compete with the torque from the binary companion in changing the

orbital axis.

The stellar quadrupole has two effects on the planetary orbit. First, it
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Figure 2.8: Examples of possible non-chaotic evolution of the spin-orbit angle,
depending on the stellar spin rate. As in Fig. 2.7, feedback has been neglected,
so that the orbital evolution, shown in the top row, is identical for all three exam-
ples: Non-adiabatic with P? = 30 days (left), stationary adiabatic with P? = 7.07
days (middle), and adiabatic advection with P? = 1.67 days (right). Parameters
are Mp = 5MJ , a0 = 1.5, ab = 300 AU, eb = 0, θlb,0 = 89◦.

changes the direction of the angular momentum axis L̂ at the rate given by

dL̂

dt

∣∣∣∣∣
SL

= Ωps
S?
L

Ŝ? × L̂ ∝M−1/2
? R5

?Ω
2
?. (2.60)

Second, it causes the eccentricity vector e to precess around L̂,

de

dt

∣∣∣∣
SL,rot

=
ω̇?
2

(5 cos2 θsl − 1)L̂× e (2.61)

where

ω̇? = −S?
L

Ωps

cos θsl

. (2.62)

The subscript “rot” in Eq. (2.61) implies that the time derivative is done in the

frame rotating with the nodal precession of the orbit (at the rate ΩpsS?/L), so that
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Figure 2.9: The final spin-orbit angle θsl,f (for systems with planets that undergo
inward migration to produce hot Jupiters) as a function of the adiabaticity pa-
rameter A0. Here, we vary A0 by varying P? = 0.1 − 10 days (as depicted on
the upper x-axis). Results are shown for initial inclinations θlb,0 = 87◦ (left), 88◦

(middle), and 89◦ (right). The colored marks correspond to the time evolution
presented in Fig. 2.7 and 2.8. As the initial inclination increases, the adiabaticity
parameterA0 increases, leading to systems with a smaller spread in θsl,f . Param-
eters are Mp = 5MJ , a0 = 1.5, ab = 300 AU, eb = 0, no feedback.

L̂ is fixed in space (compare Eq. [2.61] with Eq. [A.7]). The effect of the stellar

quadrupole on the eccentricity vector does not introduce any new features in the

orbital evolution, but simply contributes to the rate of pericenter precession due

to other SRFs (GR, tidal and rotational distortions of the planet). By contrast,

the effect on the orbital axis L̂ does directly change θlb, thereby influencing the

evolution of the spin-orbit angle.

Consider now the change in θlb due to the backreaction torque of the stellar

quadrupole (Eq. [2.60]). The maximum possible change is

(∆θlb)max ∼
(
S?
L

)
emax

' 0.12
k̄?M̄

1/2
tot R̄

2
?

M̄p

( āF
0.05

)−1/2
(

P?
30days

)−1

,

(2.63)
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Figure 2.10: Examples of possible evolution of the spin-orbit angle, depending
on the initial inclination. All examples have Mp = 5MJ , a0 = 1.5 AU, ab =
300 AU, P? = 2.3 days, and the feedback torque from the stellar quadrupole
has been neglected. The system with θlb,0 = 87◦ (left panels) has A0 . 10,
sufficiently low to generate large spin-orbit misalignments. The system with
θlb,0 = 89◦ (middle panels) hasA0 & 10, sufficiently high to preserve the initially
low misalignment, but eventually undergoes adiabatic advection (see text). The
extreme example shown on the right with θlb,0 = 89.99◦ has A0 & 103, so that θsl

is very nearly constant for all time.

assuming L & S?. The actual change of θlb in an LK cycle can be obtained by in-

tegrating Eq. (2.60) through time tk around the eccentricity maximum, yielding

(∆θlb)actual ∼

(∣∣∣∣∣dL̂dt
∣∣∣∣∣∆t

)
emax

∼
(
|Ωps|

S?
L

)
emax

tk
√

1− e2
max

' 0.1
k̄qR̄

5
?M̄totā

3
b,eff

M̄bM̄?ā7/2

( āF
0.05

)−3/2
(

P?
6days

)−2

(2.64)

where we have used Eq. (2.31) for ∆t(emax). Note that (∆θlb)actual is also approx-
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Figure 2.11: Final spin orbit misalignments as a function of the initial inclina-
tion, for various combinations of planet mass and (constant) stellar spin period,
as labeled. In this example, we neglect the feedback torque from the stellar
quadrupole on the planetary orbit. We indicate various benchmark values of
A0 by the vertical lines. The colored crosses correspond to the time evolution
presented in Fig. 2.10 (upper right panel), and Fig. 2.12 (lower left panel). Pa-
rameters are a0 = 1.5 AU, ab = 300 AU, eb = 0.

imately equal to the ratio between |dL̂/dt|SL and |dL̂/dt|LK. Eq. (2.64) assumes

∆θlb,actual . ∆θlb,max. That is, the actual change in θlb due to the backreaction

torque is given by Eq. (2.63) or Eq. (2.64), whichever is smaller.

We have already seen from Fig. 2.11 that the final spin-orbit misalignment

can depend strongly on θlb,0. We expect that the backreaction torque will sig-

nificantly affect θsl,f when (∆θlb)actual & 0.1. Eqs. (2.63) and (2.64) indicate that

this condition is satisfied for P? . a few days, depending on various parame-

ters (such as ab,eff and Mp). Fig. 2.13 shows θsl,f as a function of θlb,0 for several

values of P? and Mp, with the backreaction torque included in the calculations

(cf. Fig.2.11, which neglects the backreaction torque).
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Figure 2.12: Time evolution for two systems with very similar initial inclina-
tions, illustrating the bimodality in the final misalignment angle, as depicted in
the lower left panel of Figure 2.11. Parameters are Mp = 1MJ , P? = 5 days,
ab = 300 AU, no feedback. Nearly identical initial inclinations accumulate some
phase difference over the course of the evolution, which at the moment of tran-
sition to the adiabatic regime, give rise to different final angles, with θlb,f ≈ 52◦

and 120◦.

Comparing Figs. 2.11 and 2.13 reveals the main effects of the backreaction

torque on the final spin-orbit angle. Systems with the lowest planet mass and

shortest spin period (Mp = 1MJ , P? = 2.3 days, top left) are most strongly af-

fected by feedback, and the clean bimodality present in θsl,f in Fig. 2.11 is erased,

and replaced by clustering near θsl,f ∼ 90◦. The results for the large planet mass

and short spin period (Mp = 5MJ , P? = 2.3 days, top right) are also signifi-

cantly affected, due to planets becoming tidally disrupted at high inclinations.

The systems with longer stellar spin periods (bottom panels) are less affected by
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Figure 2.13: Same as Fig. 2.11, but including feedback from the stellar
quadrupole on the orbit.

feedback, and the general structure found in Fig. 2.11 is partially preserved.

2.5 Population Synthesis

2.5.1 Setup and Computational Procedure

In this section we perform a detailed parameter space survey for giant planets

undergoing LK migration, exploring the dependence of the final spin-orbit mis-

alignment angle distribution on the planet mass and stellar spin properties. We

focus on two types of host stars: a solar-mass (M? = 1M�, spectral type G) star,

and a massive (M? = 1.4M�, spectral type F) star. The initial spin period of both
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types of stars is set to P? = 2.3 days, corresponding to 5% of breakup for the G

star; both stars subsequently spin-down according to the Skumanich law (see

Section 2.2.1). The G (F) star is calibrated to reach a spin period of 28 (9) days

after 5 Gyr, to account for the fact that massive stars are observed to rotate more

rapidly at a given age (e.g. McQuillan et al., 2014). The stellar radius is set to

R? = 1R� for G-type stars, and R? = 1.26R� for F-type stars. We consider four

planet masses (Mp = 0.3, 1, 3, and 5MJ ), all having a radius Rp = 1RJ . Note that

this is a simplification, as some observed close-in gas giant planets are found to

be inflated in size, while others are more compact (e.g. Laughlin et al., 2011).

We integrate the full equations of motion for the planetary orbit, including

the octupole terms from the stellar companion, feedback torque from the host

stellar spin, and all short-range forces, together with evolution equations for

the host stellar spin, and the planetary spin rate (due to tidal dissipation). As in

previous population studies (Naoz et al., 2012; Petrovich, 2015b), systems that

do not obey the stability condition (Mardling & Aarseth, 2001)

ab
a
> 2.8

(
1 +

Mb

Mtot

)2/5
(1 + eb)

2/5

(1− eb)6/5

[
1− 0.3

θlb,0

180◦

]
(2.65)

are discarded. To increase the efficiency of the parameter survey, for each inte-

gration we adopt the following stopping conditions:

1. If after 500 LK timescales (Eq. [2.3]) the pericenter distance has never

reached rp = a(1 − e) < 0.07 AU, we terminate the calculation to avoid

unnecessary integrations, and classify the planet as non-migrating. The

time needed for such planets to undergo significant orbital decay is greater

than∼ 1011 years (see Section 2.3.2, Eq. [2.32]). This is far too long to allow

significant migration within the lifetime of the host star.3

3Note that with the octupole terms from the binary companion included, the planet can
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2. If at any point the pericenter distance rp = a(1−e) < rTide, where rTide is the

tidal disruption radius, given in Eq. (2.48), we terminate the integration,

and classify the planet as tidally disrupted.

3. If the semi-major axis has decayed to a < 0.1 AU, we terminate the inte-

gration and classify the planet as a hot Jupiter. In such cases, the spin-orbit

angle has always safely reached the adiabatic regime (so that the adiabatic-

ity parameter A has become sufficiently large), with Ŝ? and L̂ undergoing

mutual precession, and θsl is nearly constant, varying by less than 1◦. At

this point, LK oscillations from the binary companion are completely sup-

pressed (see Section 2.3.1), and the planet will continue to undergo pure

tidal evolution at nearly constant angular momentum, with final semima-

jor axis af ' a(1 − e2), where a and e are evaluated at the point at which

the integration is stopped.

4. If none of these conditions are satisfied during the integration, we termi-

nate the integration at t = 5 Gyr and classify the planet as non-migrating.

For each set of system parameters, we begin by integrating the full equations

of motion. However, in situations where the planet experiences sufficient orbital

decay, the LK oscillations become suppressed so that the range of eccentricity

variation narrows, and the stellar spin axis enters the adiabatic regime where

θsl ≈ constant (see Sections 2.3.1 and 2.3.5). In such cases, the eccentricity vector

e precesses much more rapidly compared to the tidal decay rate. Resolving this

achieve extreme values of eccentricity elim when θlb,0 is sufficiently large (see Section 2.3.4).
Although these octupole extreme eccentricities are nearly always achieved sooner than 500tk
(depending on εoct, see Liu et al. 2015), the possibility of the planet achieving such a high ec-
centricity cannot be ruled out for t > 500tk. We therefore run the risk of terminating systems
that might later undergo orbital decay. However, note that in such cases, the eccentricity usu-
ally becomes so high that the planet would be tidally disrupted, and removed from the sample
of HJs. We have tested this stopping criterion and found that the approximation causes a very
small fraction of tidally disrupted planets to be misclassified as non-migrating, but the fraction
of HJs is unaffected.
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rapid precession is computationally expensive, but does not influence the final

result. Therefore, once the LK eccentricity oscillations and spin-orbit angle have

both “frozen” we stop following the eccentricity precession (i.e. by neglecting

the SRF and LK terms in the planet’s equations of motion), and allow the orbit

to evolve purely under tidal dissipation.4

We assume that the initial planet orbital axis L̂ is isotropically distributed

with respect to L̂b. In principle, the initial inclination should be sampled over

the entire range (θlb,0 = [0◦, 90◦]).5 In practice however, we explore a limited

range of θlb,0 to avoid unnecessary computation for planets that have no chance

of migrating. Note that systems with inclinations θlb,0 . 40◦ (the critical “Kozai

angle”) can be safely excluded, because they do not undergo large excursions

in eccentricity. We find empirically that systems with θlb,0 . 65◦ rarely reach

sufficiently high eccentricities to induce tidal migration. In the rare cases where

migration occurs, the system always results in tidal disruption, rather than HJ

formation. We therefore restrict the inclination to lie in the range 65◦ ≤ θlb,0 ≤

90◦.

Of primary interest in this paper is the fraction of total systems that result

in the production of an HJ or tidal disruption, for fixed planet mass and stellar

type, and considering the full possible ranges of (θlb,0, a, ab, eb). For a given com-

bination of host star properties and planet mass, we run Nrun trials (typically

∼ 9000) by repeatedly sampling the inclination randomly from the restricted

4In practice, we consider the e-oscillations to have frozen when εGR > 30, and θsl to have set-
tled to its final value when the adiabaticity parameter satisfies A0 sin 2θlb > 5 (see Sections 2.3.1
and 2.3.5). We have tested both conditions extensively and find they are extremely conservative
estimates, so that the LK oscillations and variation in θsl are always safely quenched at the point
when the SRF and LK terms are neglected in the equations of motion.

5Since Mp � M?,Mb, the triple systems considered here exhibit symmetry around θlb,0 =
90◦, so that 90◦ ≤ θlb,0 ≤ 180◦ need not be considered (e.g. Liu et al., 2015).
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range (65◦ ≤ θlb,0 ≤ 90◦)6. The fractions of HJ formation and tidal disruption

can be obtained from fHJ = cos 65◦NHJ/Nrun and fdis = cos 65◦Ndis/Nrun, where

NHJ and Ndis are the number of systems among Nrun runs that resulted in HJs

and tidal disruptions.

The ultimate goals of this section are to present distributions of final stellar

spin-orbit angles, and obtain the fractions of total systems that result in HJs and

disruptions for a given planet mass and stellar type, sampling over the entire

possible ranges of a, ab, eb. However, we begin by fixing eb = 0, thereby elimi-

nating complications introduced by octupole terms. Section 2.5.2 shows results

for fixed binary separation ab and planet semimajor axis a, in order to isolate and

highlight the effects of changing the planet mass and stellar mass/spin proper-

ties. Next, Section 2.5.3 presents results for non-zero binary eccentricity (with

fixed ab and a), thus showing how the octupole term in the disturbing poten-

tial of the binary companion can affect the results. Finally, in Section 2.5.4, we

randomly sample over a wide range in (a, ab, eb) parameter space, and present

results appropriate for comparison with the observational sample of close-in

giant planets.

2.5.2 Quadrupole Results

To start, we fix the initial planet semimajor axis a0 = 1.5 AU, binary separation

ab = 200 AU, and binary eccentricity eb = 0 (so that the octupole contributions

vanish). We consider planet masses Mp = 0.3, 1.0, 3.0 and 5.0MJ , and run a

fine grid of initial inclinations, selected randomly from an isotropic distribution
6The only exception is in Section 2.5.2, where we explore initial inclinations in the range

80◦ ≤ θlb,0 ≤ 90◦, since the parameters considered there never produce migrating planets when
θlb,0 . 80◦
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(uniform in cos θlb,0). The argument of pericenter ω and orbital node Ω are ran-

domly sampled uniformly in [0, 2π]. The results are shown in Figs. 2.14 (G star)

and 2.15 (F star), where we plot the final spin-orbit angle θsl,f and semimajor

axis af versus the initial inclination θlb,0, as well as the distributions of θsl,f for

the systems that resulted in HJs (with final semimajor axis af < 0.1 AU).

G Star

The dynamics considered in this section are considerably more complicated

than the idealized analysis presented in Section 2.4, since the effects of stellar

spin-down (S? 6= constant) and the backreaction torque from the oblate host

star on the planetary orbit are now included. Nonetheless, many of the general

features remain for the G star (Fig. 2.14). The distribution of θsl,f for planets with

massMp = 1MJ is distinctly bimodal with peaks at θsl,f ∼ 40◦ and 120◦ (compare

with Figs. 2.11 and 2.13 in Section 2.4). As Mp increases, the systems with larger

initial inclinations (θlb,0) show a preference for alignment due to their higher adi-

abaticity parameters, with A0 ∝ Mp/ cos θlb,0 (see Eq. [2.11]). The largest mass

planets (Mp = 5MJ ) tend to settle into low obliquity states (θsl,f . 10◦), although

high misalignments still remain possible. Note that the cases with Mp = 5MJ

and θlb,0 ∼ 88◦ (in the top, rightmost plot in Fig. 2.14) have undergone adiabatic

advection (see Section 2.4).

For the lowest mass planets (Mp = 0.3MJ ), most systems result either in

non-migrating planets or tidal disruptions, with very few “hot Saturns” pro-

duced. Tidal disruptions for low mass planets are more common because of the

larger tidal disruption radius (see Eq. [2.48]). When Mp = 0.3MJ , rTide ≈ 4R�,

whereas when Mp = 5MJ , rTide ≈ 1.6R�. As a result, with Mp = 0.3MJ and
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the fixed values of (a, ab, eb) that we consider in this subsection, there is only a

very narrow range of initial inclinations that lead to pericenter distances that

are small enough to induce orbital decay, but large enough to prevent tidal dis-

ruption (see Fig. 2.14, left panels). For a0 = 1.5 AU, ab = 200 AU, and eb = 0,

systems with Mp ≥ 1MJ never result in tidal disruptions, because the condition

for disruption to be possible, derived in Section 2.3.4 (see Fig. 2.6 and Eq. [2.49])

is never satisfied. However, note that these results depend on the assumed tidal

disruption radius (Eq.2.48). The exact tidal radius is somewhat uncertain, and

depends on the assumed planetary mass-radius relation, which can vary for

close-in giant planets.

F Star

The results of identical calculations for the F star are shown in Fig. 2.15. The HJ

fractions are consistently lower compared to the G star, for all planet masses, but

most noticeably forMp = 0.3MJ , with only a single HJ produced in∼ 5000 trials.

For planet mass Mp = 1MJ , the distribution of θsl,f remains bimodal, but with

larger spread. For Mp = 5MJ , the distributions of θsl,f are strikingly different

between the F and G stars. The peak of the distribution occurs at θsl,f ≈ 70◦−80◦,

i.e. producing many HJs in near polar orbits with respect to the stellar spin axis.

This contrasts strongly with results for the G star, where the peak occurs at θsl,f =

0◦ − 10◦. These differences between the G star (Fig. 2.14) and F star (Fig. 2.15)

arise for two reasons. First, the larger stellar mass and radius affect the net

rate of pericenter precession from SRFs, ω̇. The contributions to ω̇ from general

relativity and the planetary tidal deformation are higher for more massive stars,

which lead to a lower maximum achievable eccentricity and tend to reduce HJ
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Figure 2.14: Final spin-orbit angle θsl,f (top panels) and semi-major axis af (mid-
dle panels) as a function of θlb,0, for planet masses Mp = 0.3, 1, 3 and 5 MJ (from
left to right, as labeled). Bottom panels show distributions of the final spin-
orbit misalignments for the systems that circularized (HJs). All systems have
M? = 1M�, a = 1.5 AU, ab = 200 AU, eb = 0. Black points: non-migrating
planets. Blue points: tidally disrupted planets. Red points: HJs. Note that
the values of θsl,f and af for the disrupted planets are simply the values at the
time-step before tidal disruption is achieved, and thus have no particular ob-
servational significance. Tidal disruptions only occur here when Mp = 0.3MJ ,
because the condition for disruption (Section 2.3.4, Eq. [2.49]) is not satisfied for
the other planet masses. See Table 2.2 for further information on the outcomes
of the simulations. The distribution of θsl,f is distinctly bimodal for Mp = 1MJ ,
with a preference for prograde orbits. As the planet mass increases, the adia-
baticity parameter A0 increases (see Section 3), and for Mp = 5MJ , the peak of
the distribution occurs at low obliquities θsl,f = 0◦ − 10◦.
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production fractions (however, note that the contribution to ω̇ from the oblate

host star has the opposite sign, and can, under come circumstances, cancel the

increases in ω̇ from GR and tidal distortion). Second, the larger stellar radius

and spin frequency (compared to the G star) both lead to a more pronounced

torque on the planetary orbit from the stellar quadrupole, since (dL/dt)SL ∝

R5
?Ω

2
?; see Section 2.4.3, Eq. [2.60]). The increased stellar radius alone leads to an

increase in the backreaction torque of the stellar quadrupole on the orbit by a

factor of ∼ 3, with a further increase due to higher Ω?.

Both the wider spread in the bimodal distributions (when Mp = 1MJ ), and

peak near θsl,f ∼ 90◦ (when Mp = 5MJ ) can be understood from the results of

Section 2.4, where we presented final spin-orbit angles for varying initial in-

clinations, both with and without feedback included. Comparing the lower left

panels of Figs. 2.11 and 2.13 shows that in some cases, including feedback causes

the bimodality to be partially preserved, but with significant broadening. Sim-

ilarly, comparing the upper left panels of Figures 2.11 and 2.13 shows that in

other cases, including feedback completely erases the bimodality, causing θsl,f

to instead cluster around∼ 90◦. Thus, we attribute the qualitative differences in

θsl,f between the G and F star to enhanced feedback from the oblate F star on the

orbit.

2.5.3 Octupole Results: Fixed Binary Eccentricity and Separa-

tion

Having demonstrated results for binary companions with zero eccentricity, we

now consider binaries with non-zero eccentricity, so that the octupole terms
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Figure 2.15: Same as Fig. 2.14, except for an F-type host star, with M? = 1.4M�,
R? = 1.26R� and corresponding spin properties (see text). Note that the his-
togram for Mp = 0.3MJ has only one data point. When Mp = 1MJ , the dis-
tributions of θsl,f are similar to those for the G star, but are broadened. When
Mp = 5MJ , however, the strong peak near low obliquities (θsl,f = 0 − 10◦) ob-
served for planets around G stars has vanished. We attribute these differences
to the increased torque from the stellar quadrupole on the planetary orbit, as
well as stronger periastron precession from SRFs.

can contribute to the dynamics. We limit the discussion in this section to the

solar-type (G) star, and present one example of fixed non-zero binary eccen-

tricity (see Section 2.5.4 for general combinations of ab and eb). For a straight-

forward comparison with the results from Section 2.5.2, and to illustrate the

role of the octupole, we choose the parameters so that the quadrupole LK

timescale tk (Eq. [2.3]) is unchanged (since tk depends only on the combination

ab,eff = ab
√

1− e2
b). We thus specify the binary eccentricity eb and choose the

63



separation ab such that the quantity ab,eff = 200 AU. Figure 2.16 shows results

for eb = 0.8, ab = 333 AU, corresponding to εoct ≈ 0.01. Additional results with

eb = 0.4, ab = 218 AU, so that εoct ≈ 0.003 are included in Table 2.2. Recall that

εoct quantifies the “strength” of the octupole potential; see Eq. (2.4).

Without the octupole terms, the limiting eccentricity elim during an LK cy-

cle is achieved at θlb,0 = 90◦. One effect of the octupole term is to allow this

limiting eccentricity to be realized at θlb,0 < 90◦ (Liu et al., 2015), so that migra-

tion becomes possible for a wider range of inclinations, thereby increasing the

production efficiency (Naoz et al., 2012).

Comparing Figs. 2.14 and 2.16 allows the role of the octupole terms to be

identified, since they would produce identical results to quadrupole order. Low

mass planets are affected by the octupole potential less than high mass planets,

because the rate of pericenter precession due to tidal distortion of the planet

has the dependence ω̇Tide ∝ M−1
p (see Eq. [A.11]). This precession can act to

suppress the extreme octupole dynamics, such as increased eccentricities and

orbit flipping. Thus for the lowest mass planets (0.3MJ ) the results do not differ

significantly from the pure quadrupole case. More massive planets (Mp = 1 −

5MJ ) are affected more strongly, with the production fraction of HJs increasing

with the octupole strength εoct (see Section 2.5.4 for further discussion of HJ and

disruption fractions).

In terms of the final obliquity θsl,f , one effect of the octupole is to increase the

number of significantly misaligned 5MJ planets, as demonstrated in Fig. 2.17.

There are two possible reasons for this. First, the octupole allows close-in plan-

ets to be produced at lower inclinations, with lower adiabaticity parameters

(A0 ∝ 1/ cos θlb,0). Since the degree of misalignment depends on A0, systems
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Figure 2.16: Same as Fig. 2.14, except that eb = 0.8, and ab = 333.33 AU (so
that ab,eff = 200, AU, and εoct ≈ 0.01). For Mp = 0.3MJ , the results are nearly
unchanged (compared to Fig. 2.14), because pericenter precession from SRFs is
higher for low-mass planets (see text), and the effects of the octupole (e.g. ex-
treme high eccentricities) are more easily suppressed. For Mp ≥ 1MJ , the HJ
production fraction is increased. In terms of θsl,f , the main effect of the octupole
is to add HJs with a primarily bimodal distribution, thereby increasing the frac-
tion of significantly misaligned planets.

with low inclinations have a tendency to settle to larger obliquities, and exhibit

bimodality. Second, the chaos induced in the orbit due to the octupole terms

may act to disrupt the tendency for alignment found for the pure quadrupole

calculations. Despite these effects, for 5MJ planets with the octupole included,

the strong peak near zero obliquity observed for the pure quadrupole results

(eb = 0, Fig. 2.14) is partially preserved.
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Figure 2.17: Distributions of θsl,f for various binary eccentricities, eb = 0, 0.4, 0.8,
as labeled, and showing planet masses Mp = 1, 3, 5MJ (from top to bottom).
Binary separations have been chosen such that ab,eff = ab

√
1− e2

b = 200 AU. As
a result, the quadrupole LK timescale tk is identical, so that the results depicted
in each panel would be identical to quadrupole order. This illustrates the role of
the octupole in generating spin-orbit misalignment.
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Table 2.2: Input parameters and results of the calculations presented in Sections
2.5.2 and 2.5.3. Each line is the result of Nrun trials with initial inclination θlb,0

randomly sampled from an isotropic distribution in the range 65◦−90◦ (the only
exception are the first eight rows, with eb = 0, where θlb,0 is sampled in 80◦−90◦).
Each set of trials has a fixed ab and eb, as indicated, and a0 = 1.5 AU, and tidal
enhancement factor χ = 10. The initial spin-orbit angle is set to θlb,0 = 0◦. We
display the “migration fraction ” fmig ≡ fHJ + fdis, as well as the “prograde
fraction” fprog i.e. the fraction of HJ systems with final obliquities θsl,f < 90◦. We
also include relevant figure numbers in the rightmost column. Note that the
stellar radius is set to R? = 1 R� when M? = 1 M�, and R? = 1.26 R� when
M? = 1.4 M�.
M? (M�) Mp (MJ) ab (AU) eb Nrun fHJ (%) fdis (%) fmig (%) fprog % Figure
Section 2.5.2
1.0 0.3 200.0 0.0 5000 1.6 10.3 12.0 84.3 2.14, 2.17
1.0 1.0 200.0 0.0 5000 11.8 0.0 11.8 71.2 2.14, 2.17
1.0 3.0 200.0 0.0 5000 10.6 0.0 10.6 72.0 2.14, 2.17
1.0 5.0 200.0 0.0 5000 9.8 0.0 9.8 82.6 2.14
1.4 0.3 200.0 0.0 5000 0.003 7.8 7.8 0.0 2.15
1.4 1.0 200.0 0.0 5000 7.2 0.9 8.2 54.5 2.15
1.4 3.0 200.0 0.0 5000 7.5 0.0 7.5 66.8 2.15
1.4 5.0 200.0 0.0 5000 8.3 0.0 8.3 74.0 2.15
Section 2.5.3
1.0 0.3 218.22 0.4 3000 1.3 10.8 12.2 89.5 2.17
1.0 1.0 218.22 0.4 3000 12.2 0.0 12.2 68.1 2.17
1.0 3.0 218.22 0.4 3000 12.4 0.0 12.4 73.4 2.17
1.0 5.0 218.22 0.4 3000 12.9 0.0 12.9 78.6 2.17
1.0 0.3 333.33 0.8 3000 0.9 11.4 12.3 82.5 2.16, 2.17
1.0 1.0 333.33 0.8 3000 17.1 0.0 17.1 70.4 2.16, 2.17
1.0 3.0 333.33 0.8 3000 23.8 0.0 23.8 65.7 2.16, 2.17
1.0 5.0 333.33 0.8 3000 24.2 0.0 24.2 66.3 2.16, 2.17

2.5.4 General Results for a Range of Binary Separations, Eccen-

tricities, and Planet Semi-major Axes

We now survey the parameter space in (a0, ab, eb), sampling the initial planet

semi-major axis a0 uniformly in the range a0 = 1− 5 AU, the binary separation

ab = 100 − 1000 AU (uniform in log ab), and the binary eccentricity uniformly

in eb = 0 − 0.8. This choice of eccentricity distribution is highly approximate,

as the actual eccentricity distribution of wide binaries is uncertain (Tokovinin
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Table 2.3: Same format as Table 2.2, but showing results for the full population
synthesis calculations in Sections 2.5.4, 2.5.5, and 2.5.6. We vary a0, ab, and eb
uniformly in the ranges a0 = (1 − 5) AU, ab = (100 − 1000) AU (note that ab is
sampled uniformly in log ab), and eb = (0− 0.8). θlb,0 is sampled isotropically in
the range 65◦ − 90◦. The other parameters and notation are the same as in Table
2.2.
M? (M�) Mp (MJ) θsl,0 (◦) χ Nrun fHJ (%) fdis (%) fmig (%) fprog % Figure
Section 2.5.4
1.0 0.3 0.0 10.0 8988 0.5 12.3 12.8 70.4 2.18,2.20
1.0 1.0 0.0 10.0 8991 2.4 11.0 13.4 78.3 2.18,2.20
1.0 3.0 0.0 10.0 8996 3.8 9.3 13.1 72.0 2.18,2.20
1.0 5.0 0.0 10.0 8994 4.7 8.4 13.0 74.1 2.18,2.20
1.4 0.3 0.0 10.0 8993 0.0 12.3 12.3 100.0 2.21
1.4 1.0 0.0 10.0 8994 1.4 10.9 12.3 64.9 2.21
1.4 3.0 0.0 10.0 8998 3.0 9.8 12.8 67.7 2.21
1.4 5.0 0.0 10.0 8997 3.6 9.1 12.6 69.4 2.21
Section 2.5.5
1.0 0.3 0.0 1.0 8998 0.0 11.8 11.8 0.0 2.23, 2.24
1.0 1.0 0.0 1.0 8991 0.7 11.1 11.8 75.6 2.23, 2.24
1.0 3.0 0.0 1.0 8997 2.3 9.6 11.9 69.6 2.23, 2.24
1.0 5.0 0.0 1.0 8993 3.1 9.5 12.5 70.9 2.23, 2.24
1.4 0.3 0.0 1.0 8997 0.0 10.9 10.9 0.0 2.25
1.4 1.0 0.0 1.0 8995 0.4 10.6 10.9 52.0 2.25
1.4 3.0 0.0 1.0 8996 1.5 10.4 11.8 58.1 2.25
1.4 5.0 0.0 1.0 8998 1.9 9.9 11.8 61.9 2.25
1.0 0.3 0.0 100.0 8995 2.4 11.6 14.0 61.6 2.23, 2.24
1.0 1.0 0.0 100.0 8997 4.1 9.7 13.8 68.7 2.23, 2.24
1.0 3.0 0.0 100.0 8994 6.4 5.9 12.4 71.8 2.23, 2.24
1.0 5.0 0.0 100.0 8994 7.8 4.1 12.0 71.0 2.23, 2.24
1.4 0.3 0.0 100.0 8997 1.5 11.7 13.2 65.5 2.25
1.4 1.0 0.0 100.0 8996 3.3 9.9 13.2 65.0 2.25
1.4 3.0 0.0 100.0 8994 6.3 6.2 12.5 66.3 2.25
1.4 5.0 0.0 100.0 8999 7.6 4.1 11.6 66.7 2.25
Section 2.5.6
1.0 0.3 30.0 10.0 8995 0.3 12.8 13.1 67.2 2.26
1.0 1.0 30.0 10.0 8996 2.6 10.6 13.1 62.1 2.26
1.0 3.0 30.0 10.0 8986 4.0 9.5 13.5 61.1 2.26
1.0 5.0 30.0 10.0 8995 4.8 8.8 13.6 70.6 2.26
1.0 0.3 60.0 10.0 8993 0.4 12.8 13.2 52.4 2.26
1.0 1.0 60.0 10.0 8995 2.6 11.2 13.8 47.5 2.26
1.0 3.0 60.0 10.0 8993 4.4 10.0 14.5 49.3 2.26
1.0 5.0 60.0 10.0 8993 4.9 9.4 14.3 54.5 2.26
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& Kiyaeva, 2015). Moreover, planet formation at a few AU may be quenched

by the presence of a highly eccentric binary companion (when ab[1 − eb] is not

sufficiently larger than a0). As in previous subsections, the initial inclination θlb,0

is sampled isotropically in the range 65◦ − 90◦. We fix the tidal enhancement

factor at χ = 10 in this section; we explore the effects of varying χ in Section

2.5.5.

Hot Jupiter and Disruption Fractions

Figure 2.18 depicts the outcomes of our simulations for planets around G stars,

where we plot the initial semi-major axis ratio ab/a0 and binary eccentricity eb

versus the initial inclination θlb,0. The final outcome of each integration is indi-

cated by the color (HJ, disrupted planet, or non-migrating). Results for planets

around F stars are qualitatively similar, and are omitted. See Table 2.3 for further

information, including the HJ and disruption fractions.

Figure 2.18 shows that HJs are produced for a relatively narrow range of

the ratio ab/a0. Planets with ab/a0 . 60 are always either tidally disrupted or

non-migrating, while those with ab/a0 & 300 never undergo migration. This

result places constraints on the requirements for stellar companions to induce

migration without destroying the planet (see also Section 2.3.4 for a discussion

of the conditions that must be satisfied for migration and tidal disruption). In

the bottom panels of Fig. 2.18, we plot the values of εoct versus θlb,0. We find that

systems with εoct & 0.03 always lead to tidal disruptions, and that no HJs are

produced for εoct & 0.01 − 0.02. This finding can be understood by examining

Fig. 2.19, where we plot the initial conditions in terms of (ab,eff , a0) for the 1MJ

planets that resulted in tidal disruptions and HJs, along with the criteria for mi-
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gration (disruption) to occur, shown as solid red (blue) curves (see also Fig. 2.6).

We see that the migration/disruption conditions derived in Section 2.3.4 are in

good agreement with our numerical calculations.

Also plotted in Fig. 2.19 are curves of constant εoct = 0.015 (dashed black

curves, with eb = 0.4, 0.6, 0.8, from bottom to top). The uppermost dashed line,

with eb = 0.8, nearly coincides with the tidal disruption boundary, so that εoct &

0.015 can only be achieved for combinations of (ab,eff , a0) that are located in the

“disruption zone” i.e. below the solid blue curve, where systems are likely to

result in tidal disruption, rather than HJs. Since we consider a range of binary

eccentricities uniform in eb = [0, 0.8], all of our systems with εoct & 0.015 reside

in the disruption zone, thereby explaining the lack of circularized planets in our

calculations with εoct & 0.015.

Planets with massMp = 1−3MJ around G stars have HJ production fractions

fHJ in the range 2.4−3.8%, and fHJ for planets around F stars is somewhat lower

(1.4 − 3%). For both stellar types, the fraction of HJs produced increases with

planet mass (see also Table 2.3, and the discussion in Section 2.5.3). This arises

from our tidal disruption criterion (Eq. [2.48]), with rTide ≈ 4R� for the sub-

Jupiter mass planet (Mp = 0.3MJ ), and rTide ≈ 1.6R� for Mp = 5MJ . Low mass

planets are therefore much more susceptible to tidal disruption, and are more

readily removed from the sample of surviving planets. We find that the fraction

of “hot Saturns” (Mp = 0.3MJ ) produced is especially low, with fHJ(0.3MJ) ≈

0.5% and 0.02% for the G and F stars respectively.

Comparing the results of Sections 2.5.2 and 2.5.3 (see Table 2.2), and this

subsection (Table 2.3), we see that although certain combinations of (a0, ab, eb)

can lead to HJ fractions of fHJ ∼ 24% (specifically when the octupole effect is
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included; see also Naoz et al. 2012), when ranges of (a0, ab, eb) are considered,

the overall HJ fraction is always less than a few percent for planets with mass

Mp = 1MJ .

Inspection of Table 2.3 reveals that the “migration fraction” fmig ≡ fHJ+fdis ≈

12 − 13% is nearly constant for all planet masses and stellar types, varying by

only ∼ 1%. Given the complicated interplay between the various ingredients

in our system (SRFs, octupole-level dynamics, tidal dissipation), and the de-

pendence of these physical processes on planet and stellar mass, this result

is not necessarily expected, but can be qualitatively understood from the dis-

cussion in Section 2.3.4. To achieve planet migration (either HJ formation or

tidal disruption) within the lifetime of the host star, two conditions must be

satisfied: (i) The planet must attain a sufficiently large eccentricity (∼ elim)

so that the corresponding periastron distance a(1 − elim) is less than a critical

value (' 0.025 AU). This translates into a necessary condition for migration

as given by Eq. (2.47). (ii) For systems that satisfy this condition, whether or

not migration actually occurs depends on the initial inclination θlb,0. As dis-

cussed in Section 2.3.4, without the octupole effect, elim is achieved very close to

θlb,0 = 90◦. With octupole, elim can be achieved for initial inclinations θlb,0 in the

range θlb,crit ≤ θlb,0 ≤ 90◦, where θlb,crit (the minimum inclination that can lead to

emax = elim) is determined by εoct ' aeb/ab(1−e2
b), with no dependence on planet

or stellar mass (see Liu et al., 2015). The fact that the “window of extreme eccen-

tricity” (θlb,crit ≤ θlb,0 ≤ 90◦) is independent of Mp and M?, combined with the

weak dependence of Eq. (2.47) on Mp and M? explains the nearly constant mi-

gration fraction observed in our calculations. Note however that the migration

fraction does depend on the assumed distributions of the planetary and binary

orbital properties (a0, ab, eb, θlb,0), and alternate choices for these distributions
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would yield different migration fractions. A semi-analytic calculation of the mi-

gration/distruption fractions, based on the idea discusssed here, is presented in

Muñoz et al. (2016, submitted).

Regardless of the reason, the fact that fmig ≈ constant is a useful finding. Re-

call that the disruption fractions quoted herein depend on the disruption con-

dition, which depends on the planetary mass-radius relation, and is somewhat

uncertain. However, noting that fmig ≈ constant allows us to estimate an upper

limit on the possible HJ fraction for any giant planet mass, by setting fdis → 0,

so that fmig → fHJ,max ∼ 13%.

Final HJ Orbital Periods and Spin-Orbit Misalignments

Figures 2.20 and 2.21 show the final orbital periods and spin-orbit misalign-

ments versus the initial inclination θlb,0 for the HJs produced in our calculations.

Note that we have removed the systems that resulted in tidal disruptions and

non-migrating planets for clarity.

We see that the distribution of the final stellar obliquities are distinctly bi-

modal for Mp = 1 − 3MJ around both G and F host stars, with peaks around

30◦ − 40◦, and 120◦ − 130◦. As planet mass increases, greater differences emerge

between the results for G and F stars. For the G-type host star, massive planets

tend to settle to lower obliquities. When Mp = 5MJ , the peak of the histogram

occurs in the first bin (θsl,f = 0◦ − 10◦), with an underlying bimodal distribu-

tion of larger misalignments (Fig. 2.20). Thus, the tendency for spin-orbit align-

ment for massive planets presented in Section 2.5.3 and in Storch et al. (2014) is

partially preserved when sampling over arbitrary binary eccentricities and sep-
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Figure 2.18: Parameter space producing HJs (red), tidally disrupted planets
(blue), and non-migrating planets (black), around G stars. Top panels: initial
binary separation ratio (ab/a0) versus the initial inclination θlb,0. Middle pan-
els: Binary eccentricity eb . Bottom panels: “Octupole strength” εoct. Results
are separated into columns by planet mass, as labeled. HJs are able to be pro-
duced over the full range of eb = [0, 0.8], but only in a relatively narrow range
of ab/a0. As a result, the range of εoct capable of producing HJs is limited, with
εoct . 0.01− 0.02.

arations. By contrast, the results for massive planets (5MJ ) around the F-type

host star (Fig. 2.21) show a greater degree of misalignment, with the peak of

the distribution at θsl,f ∼ 45◦. This is in qualitative agreement with the pure

quadrupole calculations in Section 2.5.2 (see Fig. 2.15).

We find that all combinations of stellar type and planet mass lead to a greater
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fraction of prograde (θsl,f ≤ 90◦), rather than retrograde (θsl,f ≥ 90◦) configura-

tions (see Table 2.3). However, the percentage of prograde planets around F

stars is consistently lower than around G stars. For example, we find that for

Mp = 1MJ , the prograde percentage is ≈ 78% for the G star, and ≈ 65% for the

F star.

The bimodal θsl,f distributions for Jupiter-mass planets around G stars shown

in Fig. 2.20 is quite different from those obtained by Naoz et al. (2012) and Petro-

vich (2015b). These authors find much broader θsl,f distributions, with no ap-

parent “gap” at θsl,f ∼ 90◦. A key reason for this difference is that the previ-

ous works considered slowly-rotating host stars (and non-evolving spin rates),

which have weak spin-orbit couplings.

Also depicted in Figs. 2.20 and 2.21 are the final orbital periods Porb,f as a

function of initial inclination. After the LK oscillations are suppressed, the tidal

evolution occurs at nearly constant angular momentum, so that all planets settle

to a final semi-major axis af & 2rTide. Since rTide depends inversely on planet

mass, high mass planets are able to achieve shorter final orbital periods than low

mass planets. As a result, the lowest mass planets (Mp = 0.3MJ ) reside farthest

from their host stars, and exhibit the smallest spread in Porb,f . All calculations

result in extremely close-in planets, with Porb,f . 3 days. This lack of longer

period HJs produced by the LK mechanism is in agreement with calculations

by Petrovich (2015b).
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Migration Time

For the subset of planets that undergo migration (resulting in either HJ forma-

tion or tidal disruption), it is useful to examine the migration time tmig. For

systems that result in HJs, we define tmig as the moment when the semi-major

axis has decayed to a < 0.1 AU, so that the planet is classified as an HJ (this is

also the time at which we stop our integrations). For disrupted planets, tmig is

the point at which the planet crosses the tidal radius.

Figure 2.22 shows cumulative distributions of the migration time tmig for HJs

and disrupted planets obtained from our simulation with G-type host stars (as

in Figures 2.18 and 2.20). Two trends are apparent: First, most tidal disruptions

occur early, with more than 75% occurring within 0.1 Gyr. Second, the range of

the HJ formation time varies with planet mass. For 5MJ planets, 2Myr . tmig ≤

5Gyr. In contrast, the HJ formation time for 0.3MJ planets lies in the much more

restricted range 2Gyr . tmig ≤ 5Gyr. The minimum migration time for low

mass planets thus differs significantly for low mass planets.

The cause behind the lengthier HJ formation times for low mass (Mp =

0.3MJ ) planets is as follows. Recall that the orbital decay rate for planets un-

dergoing LK migration (Eq. [2.32]) has the dependence∣∣∣∣1a dadt
∣∣∣∣
Tide,LK

∝M−1
p a−7

F where aF = a(1− e2
max), (2.66)

so that the tidal decay timescale tTide ∝ Mpa
7
F . Since systems that produce sur-

viving planets must satisfy aF/2 ≥ rTide, for each planet mass there is a mini-

mum tidal decay timescale

tTide,min ∝Mpr
7
Tide ∝M−4/3

p . (2.67)
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The minimum decay time needed to produce a surviving HJ thus increases for

lower mass planets, as we find in our numerical calculations.

Finally, we note that LK migration is often attributed to need a long time to

operate, usually∼ 0.1−1 Gyr timescales, in contrast with disk-driven migration,

which must occur before the gas dispersal time of a few Myr. While we confirm

that this is indeed the case for Jupiter and sub-Jupiter mass planets, we find

that massive planets (Mp ∼ 3 − 5MJ ) can migrate more quickly, within tens or

occasionally even a few Myr, much more comparable to the timescale for disk-

driven migration.

2.5.5 Dependence on Tidal Dissipation Strength

All results presented thus far adopt the tidal dissipation strength χ = 10, cor-

responding to tidal lag time ∆tL = 1 second. We now examine the effect of

varying dissipation rate, by considering tidal enhancement factors χ = 1 and

χ = 100, so that ∆tL = 0.1 and 10 seconds respectively. All simulations pre-

sented in Section 2.5.4 were repeated with these values of χ; see Table 2.3.

Figure 2.23 shows distributions of the HJ final orbital periods Porb,f around

the G star for each tidal dissipation strength (note that the corresponding results

for the F star are nearly identical, and are not shown). The distributions for

χ = 1 are narrow, and concentrated toward low orbital periods, with Porb,f . 2

days across all planet masses. As χ increases, the distributions widen, since

the enhanced tidal dissipation strength allows planets with larger pericenters

to migrate inward within 5 Gyr (see Eq. [2.32]). However, note that regardless

of the tidal dissipation strength, no HJs with final orbital periods Porb,f & 4.6
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Figure 2.19: Parameter space producing tidally disrupted planets (blue points)
and HJs (red points) for the calculations presented in Fig. 2.18 with Mp = 1MJ .
The red solid curve shows the maximum value of ab,eff = ab

√
1− e2

b for migra-
tion to be possible, as a function of a0 (Eq. [2.47] with ap,crit = 0.025 AU), and
the blue solid curve shows the maximum value of ab,eff for tidal disruption to be
possible (Eq. [2.49], with f = 1). If a given combination of (a0, ab,eff) is located
below the red (blue) curve, migration (disruption) is possible, but not guaran-
teed. See also Fig. 2.6. The dashed lines depict curves of constant εoct = 0.015 in
(ab,eff , a0) space, with eb = 0.8, 0.6 and 0.4 (from top to bottom). The region above
the top black dashed curve cannot have εoct > 0.015, unless eb > 0.8. Since the
location of this black curve coincides with the tidal disruption limit (blue curve),
there is very little parameter space with εoct > 0.015 capable of inducing planet
migration, without tidal disruption.
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Figure 2.20: Final stellar obliquities θsl,f and orbital periods Porb,f for the sys-
tems shown in Figure 2.18 that resulted in HJs. Parameters are M? = 1.0M�
(the G-type star), and a0, ab, eb, θlb,0 randomly sampled over wide ranges, as de-
scribed in the text, and indicated in Table 2.3. Top and middle panels depict
the final spin-orbit angle θsl,f and orbital period Porb,f versus θlb,0. The dashed
lines, included for reference, indicate the orbital period at the tidal disruption
radius, and the dotted lines indicate the minimum achievable orbital period,
defined by af ≥ 2Rtide. Bottom panels show histograms of θsl,f , with a bin width
∆θsl,f = 10◦.

days were produced. This lack of longer period HJs is consistent with previous

calculations of HJ formation via the LK mechanism (Petrovich, 2015b).

Not surprisingly, the HJ fraction fHJ increases as χ increases. However, the

migration fraction fmig = fHJ + fdis remains roughly constant, varying by only a

few percent across all combinations of planet mass, stellar type, and dissipation

strength, between ∼ 11 − 14%. This is consistent with the discussion in Section
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Figure 2.21: Same as Fig. 2.20, but showing results for planets around F stars.

2.5.4 (see last two paragraphs of that subsection). Most of the migrating planets

originate from systems where the octupole effect plays an important role, and

the “window of extreme eccentricity” (needed for achieving migration) is inde-

pendent of Mp, M?, and χ. On the other hand, most HJs originate from systems

with low εoct and high θlb,0 (see Figs. 2.18 and 2.19), where the octupole effect is

not essential for migration. For these systems, enhanced tidal dissipation allows

planets with larger periastron distances to migrate (see Eq. [2.32]), leading to a

larger fHJ.

Figures 2.24 and 2.25 compare the effects of varying χ on the distribution of

θsl,f for planets around G and F stars. Increasing χ generally leads to broader

distributions, with a greater fraction of planets at relatively low obliquities
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Figure 2.22: Cumulative distributions of migration times tmig, defined as the
time at which the planet crosses the tidal radius (for the disrupted planets), or
the time at which the semi-major axis decreases below 0.1 AU (for the HJs). The
results shown are the same set of simulations as depicted in Figs. 2.18 and 2.20.
Most tidal disruptions occur relatively early, with & 75% occurring within 0.1
Gyr. The minimum time needed to produce an HJ depends on planet mass, and
is ∼ 2 Gyr for 0.3MJ planets, but ∼ 2 Myr for 5MJ planets.
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(θsl,f . 30◦), but has little effect on the overall shape. In particular, the bimodal-

ity observed previously for (1− 3)MJ planets is preserved.

2.5.6 Primordial Misalignment

Finally, we present HJ stellar obliquity distributions for systems in which the

initial stellar spin-orbit angle is misaligned, i.e. θsl,0 6= 0. Such initially mis-

aligned configurations are relevant because various works (e.g. Bate et al., 2010;

Lai et al., 2011; Batygin, 2012; Batygin & Adams, 2013; Lai, 2014) have suggested

the possibility of “primordial misalignments” in which the protoplanetary disk

becomes tilted relative to the stellar spin axis. We limit the discussion to planets

around G stars, and the canonical tidal dissipation strength χ = 10. We fix θsl,0,

and integrate a series of systems with the initial phase of Ŝ? around L̂ (i.e. φsl,0,

where φsl,0 is the azimuthal angular coordinate in the frame where L̂ is along

the z-axis) randomly sampled uniformly in [0, 2π].

Figure 2.26 shows results for θsl,0 = 30◦ and 60◦, along with the canonical

θsl,0 = 0◦ case shown previously in Fig. 2.20. When θsl,0 = 30◦, the distributions

of θsl,f are bimodal for all planet masses, including planets with Mp = 5MJ .

For θsl,0 = 60◦, the bimodality has vanished, and the distributions are roughly

symmetric around 90◦. We conclude that non-zero initial obliquities can affect

the final spin-orbit misalignment, such that the bimodal peaks present for θsl,0 =

0◦ tend to merge as θsl,0 increases.
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Figure 2.23: Effects of varying tidal dissipation strength χ on the distribution
of final HJ orbital periods Porb,f for planets around G stars. We show χ = 1
(green, top row), χ = 100 (purple, bottom row), along with our canonical
value χ = 10 (red, middle row). The distributions shown are the result of
Nrun ∼ 9000 total trials, out of which a fraction fHJ resulted in HJ formation
(see also Table 2.3). Each column shows a different planet mass, as labeled.
The vertical dashed lines, included for reference, indicate the minimum achiev-
able orbital period, at af = 2RTide. For Mp = 0.3, 1, 3, 5MJ respectively, the
number of data points NHJ in each histogram are as follows: top row, χ = 1,
NHJ = 0, 156, 490, 650; middle row, χ = 10, NHJ = 108, 502, 811, 990; bottom row,
χ = 100,NHJ = 513, 875, 1370, 1670. Note that no close-in planets were produced
for the combination Mp = 0.3MJ , χ = 1.
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Figure 2.24: Effects of varying tidal dissipation strength χ on the distributions
of θsl,f for HJs around G stars (the same sample as in Fig. 2.23). We show χ = 1
(green, top row), χ = 100 (purple, bottom row), along with our canonical value
χ = 10 shown previously in Fig. 2.20 (red, middle row). For Mp = 0.3, 1, 3, 5MJ

respectively, the number of data points NHJ in each histogram are as follows:
top row (from left to right), χ = 1, NHJ = 0, 156, 490, 650; middle row, χ =
10, NHJ = 108, 502, 811, 990; bottom row, χ = 100, NHJ = 513, 875, 1370, 1670.
Note that no close-in planets were produced for Mp = 0.3MJ , χ = 1. For most
planet masses, increasing χ broadens the distribution of θsl,f , but the overall
shape (usually bimodal) remains unchanged. Increasing χ leads to more planets
with low obliquities (θsl,f . 20◦)

.
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Figure 2.25: Same as Figure 2.24, but showing results for planets around F stars.
The distributions shown are the result of Nrun ∼ 9000 total trials, out of which a
fraction fHJ resulted in HJ formation (see also Table 2.3). For Mp = 0.3, 1, 3, 5MJ

respectively, the number of data points NHJ in each histogram are as follows:
top row, χ = 1, NHJ = 0, 75, 310, 394; middle row, χ = 10, NHJ = 5, 305, 640, 764;
bottom row, χ = 100, NHJ = 330, 711, 1339, 1609.

2.6 Conclusion

2.6.1 Summary of Results

The main goal of this paper is to conduct a thorough population synthesis of the

production of misaligned close-in giant planets (Hot Jupiters, HJs) in stellar bi-
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Figure 2.26: The effect of primordial misalignment (θsl,0 6= 0) on distributions of
θsl,f . We show results for planets around G stars, with the canonical dissipation
strength χ = 10. Top row (red): θsl,0 = 0◦, as shown previously in Fig. 2.20. Mid-
dle row (blue): θsl,0 = 30◦. Bottom row (cyan): θsl,0 = 60◦. For Mp = 0.3, 1, 3, 5MJ

respectively, the number of data pointsNHJ in each histogram are as follows: top
row (from left to right), θsl,0 = 0◦, NHJ = 108, 502, 811, 990. Middle row, θsl,0 =
30◦, NHJ = 61, 544, 844, 1021. Bottom row, θsl,0 = 60◦, NHJ = 82, 556, 943, 1037.
See Table 2.3 for further information.
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naries by the mechanism of Lidov-Kozai (LK) oscillations with tidal dissipation,

examining the previously unexplored dependence on planet mass, and stellar

type and spin properties. The complex evolution of the stellar spin axis in sys-

tems with planets undergoing LK oscillations poses a rich dynamical problem

(see also Storch et al., 2014; Storch & Lai, 2015), and can affect the final dis-

tributions of spin-orbit misalignments. We have calculated the HJ production

fractions and planet tidal disruption fractions for a wide variety of systems,

exploring their dependence on planet mass, stellar properties and tidal dissi-

pation rate. We have also presented a number of semi-analytical calculations,

which are useful in understanding the results of our population synthesis. Our

main results can be summarized as follows.

• Planet mass is important in determining the HJ formation and tidal dis-

ruption fractions (see Table 2.3). The fraction of systems resulting in

HJs (fHJ) increases with planet mass, due to fewer tidal disruptions. For

Jupiter-mass planets, we find that fHJ ≈ 0.5% − 4% depending on the as-

sumed tidal dissipation rate and host star mass. In general fHJ increases

with the tidal dissipation rate and decreases with stellar mass. For more

massive (5MJ ) planets, we find a higher fraction, with fHJ ≈ 3% − 7.5%.

The fraction of systems resulting in “hot Saturns” (Mp ∼ 0.3MJ ) are low,

especially around massive (M? = 1.4M�, spectral type F) stars. As a re-

sult, hot Saturns around massive stars are unlikely to be produced by LK

migration in binaries, unless the tidal dissipation strength in the planet is

high (with χ & 100, corresponding to ∆tL & 10 sec).

• We find that the “migration fraction,” defined as the sum of the HJ and

disruption fractions, fmig = fHJ + fdis, has a rather weak dependence on

planet mass, stellar type and tidal dissipation rate, and is always in the
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range of 11− 14% (see Table 3). This behavior can be qualitatively under-

stood from analytical migration criteria (see Section 3.4 and Section 5.4.1,

particularly Eq. (2.47). Since the tidal disruption fraction for lower mass

planets is higher (due to the increased tidal radius), a constant migration

fraction implies that fHJ should decrease with planet mass, as described

above.

• HJs are produced only in systems when the ratio of the binary semi-

major axis ab and the initial planet semi-major axis a0 lies in the range

60 . ab/a0 . 300 (see Figs 18-19). In addition, no HJs are produced

for systems with the dimensionless octupole parameter (see Eq. [2.4])

εoct & 0.01 − 0.02, where the range depends on the planet mass (see

Figs. 2.18-2.19). These place constraints on the types of binary proper-

ties and initial planet semi-major axes that are able to induce migration

without causing tidal disruption.

• The distribution of final spin-orbit misalignment angles depends on planet

mass and the spin history of host stars (see Figs. 24-25). For Mp =

(1−3)MJ , the distributions are always bimodal, with peaks near θsl,f ≈ 40◦

and 130◦. This bimodality is independent of stellar type. For solar-type

stars, higher-mass planets (Mp = 5MJ ) exhibit a preference for low final

obliquities, with θsl,f < 10◦ (see Fig. 2.20 and Fig. 2.24), although misalign-

ment still remains possible. By contrast, for F-stars, the θsl,f distributions

for massive planets are broad, with no clear bimodality (see Fig. 2.25).

We attribute the higher degree of misalignment around F stars to the

stronger torque from the (more rapidly rotating) host star acting on the

orbit, thereby erasing the tendency towards alignment observed for 5MJ

planets around G stars. In general, the backreaction torques from the stel-
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lar quadrupole on the planet’s orbit, as well as the octupole effect from

the binary companion, give rise to a variety of evolutionary paths toward

spin-orbit misalignments during LK migration (Section 4), and result in a

complicated dependence of the θsl,f-distribution on planet mass and stellar

type.

• The final stellar obliquity distribution does not depend significantly on

tidal dissipation rate within the planet, although higher rates of dissipa-

tion do tend to broaden the distributions.

• While most of the calculations in this paper assume initial alignment be-

tween the stellar spin and planet’s orbit axis (θsl,0 = 0◦), we also explore the

effect of an initial (“primordial”) misalignment. We find that the bimodal-

ity present when θsl,0 = 0◦ begins to merge as θsl,0 increases (see Fig. 2.26).

For modest initial misalignments (θsl,0 = 30◦), the final θsl,f distribution

remains bimodal across all planet masses, with the peaks slightly shifted

towards 90◦. For higher initial misalignment (θsl,0 = 60◦) the bimodality

has nearly vanished, and the distribution is broadly distributed and cen-

tered near θsl,f ∼ 70◦ − 80◦.

2.6.2 Discussion

Previous studies of HJ production in stellar binaries that include the octupole

potential (Naoz et al., 2012; Petrovich, 2015b) focused on a single planet mass

and initial planet semi-major axis (Mp = 1MJ , a0 = 5 AU), and a single host star

type (M? = 1M�, with constant spin rate). This paper has expanded upon these

previous works by exploring a range of giant planet masses and orbital separa-

tions (Mp = 0.3−5MJ , a0 = 1−5 AU) and two host stellar types (M? = 1, 1.4M�),
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with each stellar type governed by differing magnetic braking laws. We also

consider systems with “primordial misalignment” where the initial stellar obliq-

uity θsl,0 6= 0.

In terms of HJ production fractions (fHJ), our results are in good agreement

with Petrovich (2015b). We find fHJ ∼ a few percent typically, except for sub-

Jupiter mass planets which can have much lower fractions (fHJ . 1%). In terms

of tidal disruptions, Petrovich (2015b) finds a much higher disruption fraction,

with fdis ∼ 25%, in part because he places all planets initially at a0 = 5 AU

from the host star, whereas we vary the initial semi-major axis uniformly in the

range a0 = 1− 5 AU. Planets that begin at larger orbital separations experience

stronger forcing from the binary and less pericenter precession due to SRFs, and

thus can achieve sufficiently high eccentricities such that the pericenter distance

ap = a(1 − emax) is smaller, resulting in more disruptions (see Fig. 6). Another

reason for the higher disruption fractions quoted in Petrovich (2015b) lies in the

choice of binary eccentricity range (he chooses a maximum eb = 0.9 − 0.95, in

contrast with 0.8 assumed in this work). As noted before (see the beginning

of Section 5.4), the actual eccentricity distribution of stellar binaries (especially

those that allow planet formation) is very uncertain. Also, including binaries

with eb & 0.9 may result in over-populating systems close to the stability limit

(with small ab(1 − eb)/a0). Our HJ fractions (for Mp = 1MJ around solar-type

stars) are lower than those found in Naoz et al. (2012), who give fHJ ∼ 15%.

One major reason for the difference is that Naoz et al. (2012) use the tidal radius

Eq. (2.48), but set f ' 0.6, whereas we use f = 1. Note that since the migration

fraction fmig = fHJ + fdis is always in range of 11-14% regardless of planet mass

and stellar type (see Section 5.4.1 and Table 3), in the extremely unlikely event

that all of our tidally disrupted planets actually survived as HJs, the maximum
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possible HJ production fraction from our simulations is fHJ,max = fmig ∼ 13%.

Observations constrain the HJ occurrence rate around solar-type stars to be

∼ 1% (e.g. Wright et al., 2012). Since the observed stellar companion fraction in

HJ systems is . 50% (Ngo et al., 2015), our calculations imply that LK migration

from stellar companions can probably explain around ∼ 15% of observed HJs

(using fHJ = 3%, and assuming a giant planet occurrence rate of 10%).

The calculations presented in this paper never produce HJs with final orbital

periods Porb,f & 4.5 days, with typical periods in the range of 1 − 3 days, de-

pending on planet mass and tidal dissipation strength (see Fig. 23). More mas-

sive planets tend to have shorter periods (sometimes . 1 day) because they can

survive tidal disruption during the high-eccentricity periastron passage. Thus,

it is clear that LK migration in stellar binaries cannot explain the observed pop-

ulation of HJs with periods greater than 4 days (see also Petrovich 2015b for

an in-depth discussion of the tendency for LK migration to produce an excess

of “Very Hot Jupiters” compared to observations.) In addition, for both types

of stars, our calculations yield very few planets in the process of migration. In

particular, very few “warm Jupiters” are produced with 0.1 . a . 0.5 AU after

evolving the system for 5 Gyr (see also Petrovich 2015b).

In the absence of primordial misalignment (so that θsl,0 = 0◦), our calcula-

tions always predict, for planet masses Mp = 1− 3MJ , a bimodal distribution of

final stellar spin-orbit misalignments, with peaks at θsl,f ≈ 40◦ and 130◦, and a

dearth around 90◦. This result is independent of host stellar type and tidal dis-

sipation strength (see Figs. 24-25). Such bimodality results from the stellar spin

evolution transitioning from the non-adiabatic to fully adiabatic regime (Storch

et al., 2017), and thus may be interpreted as a clear signature of HJ formation
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from LK oscillations with tidal dissipation. However, for Mp = 5MJ planets,

the shape of the distribution of θsl,f differs substantially, and for planets around

F stars, nearly polar orbits (θsl,f ∼ 90◦) are commonly produced (see Fig. 2.25,

right panels).

On the other hand, when significant primordial misalignments are present,

with θsl,0 & 60◦ (see Section 5.6), the bimodality of the final misalignment distri-

bution disappears, and planets on polar orbits are easily produced (see Fig. 2.26,

bottom row). Observationally, the distribution of HJ spin-orbit misalignments

does not exhibit a clear bimodal structure (e.g. Albrecht et al., 2012a) and a hand-

ful of observed systems have nearly polar orbits, such as WASP-1b (Simpson et

al., 2011), WASP-7b (Albrecht et al., 2012b), and WASP-79b (Addison et al., 2013)

(these systems mostly have Mp ∼ 1MJ and host star mass M? ≈ 1.2 − 1.5M�).

Thus, without substantial primordial misalignments, LK migration in stellar bi-

naries cannot explain the observed θsl,f distribution of HJs. This again suggests

that the majority (∼ 85%) of HJs are probably formed by other mechanisms (e.g.,

disk-driven migration).

One physical effect not included in this paper is tidal dissipation in the host

stars. This can in principle affect the semi-major axis of very close-in giant plan-

ets, and change the spin-orbit misalignment angle, as studied in numerous pa-

pers (e.g., Barker & Ogilvie, 2009; Jackson et al., 2009; Winn et al., 2010; Mat-

sumura et al., 2010; Lai, 2012; Rogers & Lin, 2013; Xue et al., 2014; Valsecchi et

al., 2014). We neglect stellar tidal dissipation on purpose in this paper because,

compared to tidal dissipation in planets, stellar tides play a negligible role in cir-

cularizing high-eccentricity planets undergoing LK oscillations. Moreover, the

stellar tidal dissipation rate is highly uncertain, and likely depends on the stel-
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lar type and planet mass (see Ogilvie 2014 for a review); it is also possible that

the tidal process and timescale for spin-orbit alignment are different from those

for orbital decay (Lai 2012). Once an HJ has formed through high-eccentricity

migration, it is straightforward to examine the effect of stellar tides (using pa-

rameterized tidal models) on the subsequent evolution of the system.
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CHAPTER 3

TEETERING STARS: RESONANT EXCITATION OF STELLAR

OBLIQUITIES BY HOT AND WARM JUPITERS WITH EXTERNAL

COMPANIONS

3.1 Introduction

Stellar spin-orbit misalignments (obliquities) in exoplanetary systems with a

close-in planet have received significant attention in recent years. The ma-

jority of detailed obliquity measurements have been conducted in hot Jupiter

(HJ, giant planets with orbital periods less than ten days) systems via Rossiter-

McLaughlin observations (e.g. Winn et al., 2005; Hébrard et al., 2008; Narita et

al., 2009; Winn et al., 2009; Triaud et al., 2010; Albrecht et al., 2012a), yielding

a wide range of sky-projected obliquities, and even some retrograde systems

(Winn & Fabrycky, 2015). Stellar obliquities provide a clue to the system’s dy-

namical history, and may shed insight into planetary migration mechanisms.

Since there is still no consensus on how HJs arrived at their short-period orbits,

with several different proposed migration theories, and even in-situ formation

(e.g. Dawson, & Johnson, 2018), understanding the origins of stellar obliqui-

ties will further our understanding of HJ formation/migration. In recent years,

warm Jupiters (WJs, giant planets with orbital periods between 10 and 300 days)

have gained considerable attention alongside HJs, and raise similar questions

regarding their formation/migration. Whether HJs and WJs arise from a single

This chapter is adapted from Anderson, & Lai (2018).
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or multiple formation channels is still an open question.

Low stellar obliquities are frequently attributed to either in-situ formation

or disk-driven migration, in which the planetary orbit shrinks due to gravita-

tional torques from the protoplanetary disk. In contrast, high obliquities may

be attributed to high-eccentricity migration, in which gravitational interactions

with other planets or a distant stellar companion raise the orbital eccentricity

of a “cold Jupiter” to a large value, so that tidal dissipation at pericenter pas-

sages leads to orbital decay (e.g. Rasio & Ford, 1996; Wu & Murray, 2003; Fab-

rycky & Tremaine, 2007; Nagasawa et al., 2008; Wu & Lithwick, 2011; Beaugé

& Nesvorný, 2012; Naoz et al., 2012; Petrovich, 2015a,b; Anderson et al., 2016;

Muñoz et al., 2016; Hamers et al., 2017). High-eccentricity migration often re-

sults in large changes in orbital inclination, and even more extreme changes in

the orientation of stellar spin axis itself (Storch et al., 2014; Storch & Lai, 2015;

Anderson et al., 2016; Storch et al., 2017), and is thus a natural way of producing

large stellar spin-orbit misalignments. However, as an alternative explanation

for high obliquities, various works have investigated the possibility of tilting

the protoplanetary disk itself relative to the stellar spin axis. Such primordial

misalignments may allow for in-situ formation or disk-migration to result in

high obliquities, albeit with varying degrees of success (Bate et al., 2010; Fou-

cart & Lai, 2011; Lai et al., 2011; Batygin, 2012; Batygin & Adams, 2013; Lai, 2014;

Spalding & Batygin, 2014; Fielding et al., 2015; Zanazzi & Lai, 2018). Given these

results, exactly what obliquities inform us about planetary migration history re-

mains far from obvious.

Thus far, primordial disk misalignment has been the main competitor to

high-eccentricity migration in generating high stellar obliquities. In this pa-
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per, we consider another mechanism in which a HJ/WJ that formed in-situ or

through disk migration may attain in a high stellar obliquity. This mechanism

requires that the system host an external, inclined planetary or stellar compan-

ion. The companion induces nodal precession of the inner planet, causing its

orbital axis to change direction; meanwhile, the oblate host star and the inner

planet (a HJ/WJ) experience a mutual torque, causing precession of both the

stellar spin and orbital axes. A secular resonance occurs when the spin axis pre-

cession frequency (driven by the inner planet) is comparable to the orbital nodal

precession frequency driven by the companion, potentially leading to large stel-

lar obliquities, even for nearly aligned initial configurations (Lai, Anderson, &

Pu, 2018). In this paper, we show that a system consisting of a host star, a HJ

or WJ, and an outer companion may naturally pass through this secular reso-

nance due to the spin-down of the star (by magnetic braking), and we examine

to what extent large obliquities can be generated through this process. We fo-

cus exclusively on planetary companions, but note that the results of this paper

may also be applied to stellar companions. In some scenarios, such compan-

ions may have previously induced high-eccentricity migration, leading to the

formation of a HJ/WJ with a high obliquity. However in this paper, we assume

a formation process that resulted in a low initial obliquity (e.g. in-situ formation

or migration within a protoplanetary disk aligned with the stellar equator), and

identify the prospects for the companion to secularly raise the obliquity follow-

ing the formation/migration. The assumption of an initially low obliquity may

be particularly appropriate for WJs, given that a high-eccentricity migration ori-

gin for such planets suffers from a number of difficulties (e.g. see Huang et al.

2016, Antonini et al. 2016, Anderson & Lai 2017).

The role of external companions in affecting stellar obliquities has been stud-
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ied before. Some papers considered a spherical host star (e.g. Kaib et al., 2011;

Becker et al., 2017) or a slowly rotating star (e.g. Mardling, 2010), so that the

direction of the spin axis remains fixed or experiences little variation. Boué &

Fabrycky (2014) and Lai, Anderson, & Pu (2018) examined the whole range of

spin-orbit behaviors for oblate stars with a constant spin period, taking account

of the spin axis changes due to gravitational torques from the inner planet. Our

paper builds upon these works by exploring the dynamical evolution on Gyr

timescales, so that the stellar spin-down (by magnetic braking) plays an impor-

tant role in the evolution of the stellar obliquity. In addition, we show that the

resulting spin-orbit dynamics and obliquity excitation act to decrease the mu-

tual inclination between the two planets.

The resonant obliquity excitation mechanism studied in this paper requires

that the HJ/WJ have external companions with certain ranges of masses and or-

bital separations, as well as modest inclinations. Distant planetary companions

to HJs and WJs are common, with estimated occurrence rates 50% for WJs and

up to 80% for HJs (Bryan et al., 2016). There is a growing number of systems

with well-characterized orbits for the companion, especially for WJs (see An-

tonini et al., 2016, for a recent compilation of WJs with external companions).

Mutual inclinations in giant planet systems remain far less constrained, al-

though recent observations are beginning to probe individual systems, with sev-

eral in high-inclination configurations (Mills & Fabrycky, 2017; Masuda, 2017).

Upcoming Gaia results may provide further constraints on mutual inclinations

of giant planet systems (e.g. Perryman et al., 2014).

We note that the present sample of stellar obliquity measurements is limited

mostly to HJs. The results of this paper show that high obliquities may be com-
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mon for WJs with external companions, regardless of their formation history.

This paper is organized as follows. In Section 6.2.1 we outline the problem

setup and review the relevant spin-orbit dynamics. In Section 3.3 we explore in

detail the process of resonant obliquity excitation using a somewhat idealized

model, where the stellar spin angular momentum is much less than the inner

planet orbital angular momentum. Such a model serves as a starting point in un-

derstanding the dynamics of more realistic systems, with comparable spin and

orbital angular momenta. In Section 6.4 we relax the assumption of small spin

angular momentum, and numerically explore the parameter space for HJs/WJs

with various types of external companions. We summarize and conclude in

Section 5.4.

3.2 Setup & Classification of Dynamical Behavior

We consider an oblate star of mass M?, radius R?, and spin period P?, host-

ing a close-in giant planet m1 (either a HJ or WJ) in a circular orbit with semi-

major axis a1, and a distant perturber mp, with semi-major axis ap, eccentricity

ep, and inclination I relative to the orbit of the inner planet. Both planets are

considered as point masses. The star has spin angular momentum S?, and the

inner planet and the perturber have orbital angular momenta L1 and Lp respec-

tively. The quadrupole-order secular equations of motion for the spin unit vec-

tor ŝ? = S?/S? and the orbital angular momentum unit vectors l̂1 = L1/L1 and
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l̂p = Lp/Lp are

dŝ?
dt

= ω?1(ŝ? · l̂1)(ŝ? × l̂1) (3.1)

dl̂1
dt

= ω1p(l̂1 · l̂p)(l̂1 × l̂p) +
S?
L1

ω?1(l̂1 · ŝ?)(l̂1 × ŝ?) (3.2)

dl̂p
dt

=
L1

Lp

ω1p(l̂p · l̂1)(l̂p × l̂1), (3.3)

where the relevant precession frequencies are

ω?1 =
3kq?
2k?

(
m1

M?

)(
R?

a1

)3

Ω?, (3.4)

and

ω1p =
3mp

4M?

(
a1

ãp

)3

n. (3.5)

In equation (3.4), Ω? = 2π/P? is the angular frequency of the star, and k? and

kq? are related to the stellar moment of inertia and quadrupole moment (see Lai,

Anderson, & Pu 2018) for precise definitions. In equation (3.5), n =
√
GM?/a3

1

is the orbital mean motion of the inner planet, and we have defined an effective

semi-major axis of the perturber2,

ãp ≡ ap

√
1− e2

p. (3.6)

Note that in equations (3.1) - (3.3) we have neglected the coupling between the

star and outer planet (see Lai, Anderson, & Pu, 2018), which induces precession

of ŝ? at a rate ω?p ∼ (mp/M?)(R
3
?/ã

3
p)Ω?, and is completely negligible for this

problem.

The dynamical behavior of the system can be described as follows: ŝ? and l̂1

mutually precess around the axis defined by S? + L1, while, l̂1 and l̂p undergo

mutual precession around the total orbital angular momentum axis defined by

2The perturber properties enter mainly in the combination ãp/m
1/3
p ; however, we note that

additional dependence is introduced through the ratio L1/Lp.
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L1 + Lp. The evolution of ŝ? due to the forcing of l̂1 (which is itself being forced

by l̂p) is therefore complicated, depending crucially on the relative precession

rates ω?1 and ω1p, as well as the angular momentum ratio S?/L1. For a rapidly

rotating star, S? can be comparable to L1, so that the back-reaction torque from

the oblate star on the orbit is non-negligible.

Meanwhile, the rotation rate of the star Ω? decreases due to magnetic brak-

ing. We adopt the Skumanich law (Ω̇? ∝ −Ω3
?; see Skumanich 1972, Bouvier

2013) for the stellar spin-down, so that the spin frequency as a function of time

is given by

Ω? =
Ω?,0√

1 + αMBΩ2
?,0t

, (3.7)

where Ω?,0 is the initial spin rate and αMB is a constant, calibrated such that the

rotation period reaches ∼ 30 days at an age ∼ 5 Gyr. In this work we adopt

αMB = 1.5× 10−14 yr, appropriate for solar-mass stars (Barker & Ogilvie, 2009).

The qualitative spin-orbit dynamics depend on the relevant precession rates

(Boué & Fabrycky, 2014; Lai, Anderson, & Pu, 2018). Lai, Anderson, & Pu (2018)

describe the spin-orbit dynamics by introducing the dimensionless parameter

ε?1, which, for a giant planet on a short period orbit can be approximated as

ε?1 =
ω1p − ω?p

ω?1(1 + S?/L1)
' ω1p

ω?1

(
1

1 + S?/L1

)
' 1.25

(
k?

6kq?

)(
mp

m1

)( a1

0.04 AU

)9/2
(

ãp

1 AU

)−3

×
(
P?

30 d

)(
M?

M�

)1/2(
R?

R�

)−3(
1

1 + S?/L1

)
. (3.8)

We summarize the key points from Lai, Anderson, & Pu (2018) here: (i) If ε?1 �

1, ŝ? and l̂1 are strongly coupled and undergo rapid mutual precession, and the

spin-orbit angle θ = θ?1 (the angle between ŝ? and l̂1) satisfies θ ' constant.

If ŝ? and l̂1 are initially aligned, spin-orbit misalignment cannot be generated
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when ε?1 � 1. (ii) If ε?1 � 1, ŝ? and l̂1 are weakly coupled, and both precess

around the total orbital angular momentum axis, but l̂1 precesses at a much

faster rate than ŝ?. As a result, the spin-orbit angle varies between a minimum

and a maximum value. For an initially aligned system, and when L1 � Lp, the

spin-orbit angle varies in the range 0 . θ . 2I over a precession cycle. (iii)

If ε?1 ' 1, a secular spin-orbit resonance occurs due to the commensurability

between the precession frequencies ω?1 and ω1p, and θmay grow to a large value.

See also Lai & Pu (2017) (particularly Appendix A) and Pu & Lai (2018) (Section

2.2) for more theory on the details of this resonance.

Lai, Anderson, & Pu (2018) considered systems where the stellar spin-rate

was held constant. In this case, resonant excitation of obliquity requires an outer

perturber with somewhat fine-tuned properties, due to the strong dependence

of ε?1 on ãp. However, over Gyr timescales, the stellar spin period is reduced by

a factor of∼ 10 due to magnetic braking, so that ε?1 is a function of time. Systems

that begin with spin-orbit alignment and ε?1 � 1 (in the strong-coupling regime)

may eventually cross ε?1 ' 1 due to magnetic braking, so that θ resonantly

grows. After the resonance is encountered, the system enters the weak-coupling

regime, with θ varying between a minimum and a maximum. We will show in

this paper that the “final” range of variation of the spin-orbit angle (following

resonant excitation) depends on the spin history of the system.

Resonant excitation of stellar obliquities requires that the system initially sat-

isfy ε?1 . 1. In addition, in order for the resonance to be encountered within a

reasonable time (within, say 5 Gyr), we require that ε?1(t = 5Gyr) & 1. For an

inner planet with m1 = MJ and various values of a1, and an initial stellar spin

period of 1 day (roughly the lower limit obtained from observations of T-Tauri
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stars), the range of perturber “strength” (ãp/m
1/3
p ) allowing resonant obliquity

excitation may be identified, shown as the shaded grey region in Fig. 3.1. Note

that this region allowing resonant growth narrows slightly with increasing ini-

tial stellar spin period (the lower boundary, solid blue line). The upper bound-

ary (dashed blue line) is independent of initial spin period, because solar-type

stars “forget” their initial spin periods after several hundred Myr. The bound-

aries of parameter space allowing resonant obliquity excitation in Fig. 3.1 are

approximate. In Section 6.4 we perform a thorough numerical exploration of the

parameter space and numerically confirm that the shaded region in Fig. 3.1 does

indeed identify the parameter space available for resonant obliquity growth.

Since a sufficiently inclined perturber can also excite the inner planet ec-

centricity, we plot the necessary condition for quadrupole-level Lidov-Kozai

eccentricity oscillations in Fig. 3.1. This arises from requiring that the rate of

apsidal precession due to general relativity is sufficiently slow compared to that

induced by the perturber (see, e.g. equation 29 of Anderson et al., 2017). For

a given value of a1, perturbers below the black dotted line may induce Lidov-

Kozai oscillations. Note that this condition is necessary for Lidov-Kozai cycles

to develop, but not sufficient, because a minimum mutual inclination (ILK,min) is

also required.3 In the idealized scenario where apsidal precession from general

relativity and other “short-range-forces” are neglected, ILK,min ' 40◦. Inclu-

sion of short-range forces causes ILK,min to exceed 40◦, often by a considerable

amount. Inspection of Fig. 3.1 reveals that there is some parameter space for

HJs that may allow both resonant obliquity excitation and Lidov-Kozai cycles

(although note that the required perturber must be quite close/strong, and of-

3An upper boundary ILK,max also exists, so that Lidov-Kozai cycles also require I0 < ILK,max

(with ILK,max retrograde). However, this upper boundary is probably irrelevant for planetary
companions, as such retrograde inclinations are not easily produced.
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ten in conflict with observational constrains of companions to HJs; Huang et

al. 2016). Since this paper assumes circular orbits for HJs/WJs, for simplicity

we will always restrict out attention to initial inclinations less than 40◦ to ensure

that Lidov-Kozai oscillations do not arise. However, we note that the qualitative

spin-orbit dynamics discussed in this paper will often hold for higher inclina-

tions, as long as I0 < ILK,min. If Lidov-Kozai oscillations do occur, then the evo-

lution of the stellar spin axis becomes chaotic (Storch et al., 2014; Storch & Lai,

2015), which may allow the full range of obliquities (0◦ − 180◦) to be explored.

This issue is beyond the scope of this paper.

In this paper we neglect tides raised by the planet on the host star, which

may lead to orbital decay and damping of obliquities. The timescale for tides to

reduce the semi-major axis of a planet around a solar-type star is

ta ' 1.3× 1011yr

(
Q

′
?

107

)(
m1

MJ

)−1(
a1

0.04 AU

)13/2

, (3.9)

where Q
′
? = 3Q?/(2k2) is the reduced tidal quality factor. The timescale for

obliquity decay is tθ ∼ (S?/L1)ta (see Lai, 2012, for a discussion on the relation

between ta and tθ). Although stellar tides can be important for HJs that are

massive and/or in sufficiently short-period orbits, tides are unimportant for HJs

that may experience changes in stellar obliquity from external companions. For

example, using the canonical values of Q′
? and m1 in equation (3.9), a HJ with

a1 ' 0.02 AU has a tidal decay timescale ta ' 1.4 Gyr, so that tides may indeed

sculpt the semi-major axis and stellar obliquity over the ∼ Gyr timescales of

interest in this paper. However, such a system will always be in the strong-

coupling regime (ε?1 � 1) throughout the main-sequence lifetime of the star,

unless the system hosts an extremely strong external perturber, with ãp/m
1/3
p .

0.4AU/M
1/3
J . Since HJs have been shown to lack such companions (Huang et al.,

2016), we expect tides (for Q′
? ∼ 106 − 107) to be completely negligible for the
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systems of interest in this paper.

The above estimate of the tidal timescales (with Q
′
? ∼ 107) assumes equilib-

rium tides (Zahn, 1977), where the source of dissipation is damping by turbu-

lent viscosity in the convective region. Mathis (2015) and Bolmont & Mathis

(2016) have recently suggested that Q′
? may briefly attain a much lower value

(Q′
? ∼ 103.5) for rapidly rotating pre-main-sequence stars, due to excitation and

damping of inertial waves in the convective shell (see Ogilvie 2013 for the origi-

nal calculation based on idealized two-zone stellar models). The ensuing orbital

evolution of HJs in this scenario was recently explored by Heller (2018). While

intriguing, such a tidal treatment is beyond the scope of this present paper.

3.3 Spin-Orbit Dynamics when S? � L1

In this section we review and develop some analytic results in order to gain in-

sight into the spin-orbit dynamics. We consider a limiting case where S?/L1 �

1, and defer the discussion of comparable S? and L1 to Section 3.4. Since realistic

HJs and WJs often satisfy S? ∼ L1, especially when the host star is young, the fol-

lowing discussions are somewhat idealized, but shed insight into the dynamical

evolution of more complicated systems. Readers interested in the quantitative

results and conclusions for more typical HJ and WJ systems (with S? ∼ L1) are

referred to Sections 3.4 and 5.4.

The spin-axis dynamics in the limit S?/L1 � 1 has been studied in a va-

riety of contexts, and is related to the well-known Cassini state problem (e.g.

Colombo, 1966; Peale, 1969, 1974; Ward et al., 1979; Henrard & Murigande, 1987;

Ward & Hamilton, 2004; Fabrycky et al., 2007). In the following we review the
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Figure 3.1: Parameter space for resonant excitation of the stellar obliquity to
be possible (grey region) for an inner planet with mass m1 = MJ, in terms of
its semi-major axis a1, and the perturber “strength” ãp/m

1/3
p , where ãp is given

by equation (3.6). The blue solid (dashed) lines indicate constant ε?1 = 1, with
P? = 1 (30) days. The black dotted line indicates the maximum value of ãp/m

1/3
p

for Lidov-Kozai eccentricity oscillations to be possible, given a sufficiently high
inclination.

relevant spin-axis dynamics and Cassini state theory.
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3.3.1 Cassini States & Phase Space Structure

When S? � L1, the back-reaction torque of the spin on the orbit vanishes, so that

the orbital axis l̂1 is unaffected by ŝ?, and simply undergoes nodal precession

due to mp. The invariable plane is thus defined by the unit vector ĵ, in the

direction of the total orbital angular momentum J = L1 + Lp, and l̂1 precesses

around ĵ, with constant inclination I ′ according to

dl̂1
dt

= g(ĵ × l̂1), (3.10)

where the precession frequency g is

g = − J

Lp

ω1p cos I, (3.11)

and where I is the angle between l̂1 and l̂p. For ease of notation, we will work

in the limit L1 � Lp for the remainder of Section 3, so that I ′ → I and g →

−ω1p cos I , but the following results are valid for comparable L1 and Lp, with ĵ

replacing l̂p and I ′ replacing I .

Following standard procedures, we transform to the frame rotating with fre-

quency g, where l̂1 is fixed and directed along the z-axis. In this rotating frame,

l̂p is fixed, and ŝ? evolves according to(
dŝ?
dt

)
rot

= α(ŝ? · l̂1)(ŝ? × l̂1) + g(ŝ? × l̂p). (3.12)

In equation (3.12), we have adopted standard notation, where the spin preces-

sion constant α = ω?1. We may rescale time such that τ = αt; thus the spin

dynamics only depend on the ratio g/α and I .

The dynamical evolution of ŝ? can be specified by the obliquity θ (the angle

between ŝ? and l̂1), and the phase angle φ (the longitude of ascending node of
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the stellar equator in the rotating frame). Note that cos θ and φ are canonical

variables for the Hamiltonian governing this system, which is given by

H = −α
2

(ŝ? · l̂1)2 − g(ŝ? · l̂p). (3.13)

The equilibrium, or Cassini states, are obtained by setting equation (3.12) to

zero. This requires that ŝ?, l̂1, and l̂p are coplanar (with φ = 0 or π), implying

that ŝ? and l̂1 precess at the same rate in inertial space around l̂p. The Cassini

state obliquities satisfy

g

α
sin(θ − I) + sin θ cos θ = 0. (3.14)

Equation (3.14) has either two or four solutions, depending on the values of g/α

and I . Following standard convention and nomenclature (See Figs. 3.2 and 3.3),

Cassini states 1, 3 and 4 (θ1,3,4 < 0) occur when ŝ? and l̂p are on opposite sides of

l̂1 (φ = 0), while Cassini state 2 (θ2 > 0) occurs when ŝ? and l̂p are on the same

side of l̂1 (φ = π).

For convenience, we define η ≡ |g|/α. Note that η is related to the parameter

ε?1 introduced in Section 2 (see equation 3.8), by η = ε?1| cos I| (for S?/L1 � 1).

Thus, η � corresponds to strong coupling between ŝ? and l̂1, while η � 1

corresponds to weak coupling. When η < ηcrit, with

ηcrit = (sin2/3 I + cos2/3 I)−3/2, (3.15)

all four Cassini states exist, whereas when η > ηcrit, only θ2 and θ3 exist (see

Fig. 3.3).

The Cassini states θ1, θ2, θ3 are stable, while θ4 is unstable and lies along a sep-

aratrix in the underlying phase space (cos θ, φ). In Fig. (3.3a) the Cassini states

are depicted as a function of η with fixed I = 20◦. When η = ηcrit, θ1 and θ4

merge and destroy each other.
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The phase space structure (contours of constant H, see equation [3.13]) is

shown in Fig. (3.3b - 3.3e) for increasing values of η. For values of η � 1

(Fig. 3.3b), the separatrix (which passes through θ4 and encloses θ2) is relatively

narrow, and most of the trajectories circulate (over φ) with little variation of

cos θ, although librating trajectories exist close to θ1, θ2 and θ3. As η increases,

the separatrix widens, and eventually when η is close to, but less than ηcrit, the

“top” of the separatrix touches cos θ = 1. As η increases further, the shape of the

separatrix changes, and encloses θ1 (see Fig. 3.3c). The phase space just before

θ1 and θ4 merge is shown in Fig. 3.3d, and just after merging in Fig. 3.3e. When

η > ηcrit, the only prograde Cassini state is θ2.

3.3.2 Spin-Orbit Resonance and Separatrix Crossing

We next consider the scenario where η slowly increases with time. The exact

form of η(t) is unimportant, as long as η increases slowly compared to all the

precession timescales.

When η changes slowly, the area of the phase-space trajectory is constant, so

that

A ≡
∮

cos θ dφ = constant. (3.16)

Equation (3.16) only holds as long as there are no abrupt changes in the phase

space structure (e.g. if η crosses ηcrit, A is not conserved).

A numerical integration of equation (3.12) with slowly increasing η is shown

in Fig. 3.4, where initially θ ' 0 and η � 1. At early times, the spin axis is

strongly coupled to the orbital axis, so that θ remains nearly constant, and the

system librates around Cassini state 1 (θ1), and the area of the trajectory (A) is
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ŝ?

Figure 3.2: Cartoon illustration of the Cassini state configuration (with ŝ?, l̂1,
and l̂p located in the same plane) and the adopted sign convention for θ. When
θ > 0, ŝ? and l̂p are located on the same side of l̂1 (as shown, corresponding to
θ2). When θ < 0, ŝ? and l̂p are on opposite sides of l̂1 (corresponding to θ1,3,4).

small. As η increases, θ1 increases in magnitude, and the spin axis continues to

librate around θ1 while preserving phase-space area. Eventually, when η = ηcrit,

θ1 merges with θ4, and the system is forced to cross the separatrix. At the separa-

trix crossing, the obliquity undergoes a rapid increase and the phase-space area

increases by a factor of ∼ 100. After the separatrix crossing, φ circulates, and θ

varies between a maximum and minimum value, determined by the area of the

separatrix when η = ηcrit. The system continues to evolve, while preserving the

new, much larger phase space area. We refer to the process of rapid obliquity

growth during the separatrix crossing as resonant excitation of the obliquity.

108



10-1 100 101

η

180

90

0

90

180
θ 1
,2
,3
,4

 (
d
eg

)

θ3

θ4

θ1

θ2 (a)
η= ηcrit

1.0

0.5

0.0

0.5

1.0

co
s(
θ)

(b) (c)

0 π/2 π 3π/2 2π

φ

1.0

0.5

0.0

0.5

1.0

co
s(
θ)

(d)

0 π/2 π 3π/2 2π

φ

(e)

Figure 3.3: Panel (a): Cassini states θ1,2,3,4 versus η = |g|/α, with fixed I = 20◦.
Panels (b) - (e): Phase-space portraits for various values of η. Panel (b): η =
0.1. For such a small η, the separatrix (thick black curve passing through θ4) is
narrow, and almost all trajectories outside of the separatrix circulate, except for
small librations very close to θ1 and θ3. Panel (c): η = 0.5. As η increases, the
separatrix expands until it touches cos θ = 1 (not shown here), after which the
shape of the separatrix abruptly changes, now enclosing θ1. Panel (d): η = 0.561.
Phase space just before θ1 and θ4 merge. Panel (e): η = 2. Phase space after θ1

and θ4 have merged, so that the only remaining Cassini states are θ2 and θ3.
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Figure 3.4: Spin evolution with slowly increasing η, for a system with S?/L1 �
1, so that I = constant (as discussed in Section 3). All blue curves show the
result of a numerical integration of equation (3.12), where η = |g|/α slowly in-
creases with time according to η ∝ (1−ct)−1, where c is a constant. Panels (a)-(d)
show the obliquity (θ), the precessional phase of ŝ? in the rotating frame (φ), the
coupling parameter η, and phase space area A (normalized by the area of sep-
aratrix when η = ηcrit). Panels (e)-(h) show the phase space trajectory obtained
from the numerical integration (blue curves), along with the underlying phase
space (grey contours), fixed points, and separatrix (thick black curve). Panel (e):
Initial phase space, when η = 0.1 and the spin axis librates around θ1. Panel
(f): Phase space just before θ1 and θ4 merge, with the spin axis tightly enclosed
by the separatrix and librating around θ1 (compare with Fig. 3.3c). Panel (g):
Phase space just after θ1 and θ4 merge. The spin axis now circulates around the
only remaining prograde Cassini state, θ2. Panel (h): Phase space when η � 1,
showing the final degree of obliquity variation, which varies in the range 2I .
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Since the phase-space area following the separatrix crossing is simply the

area enclosed by the separatrix itself when η = ηcrit (denoted as Asep), the final

(when η � 1), average value of θ can be estimate from

(cos θ)ave '
Asep

2π
. (3.17)

Since the spin and orbit are weakly coupled when η � 1, the range of obliquity

variation (centered around θave) is simply 2I . Fig. 3.5 shows θave as a function of

inclination, as determined by equation (3.17), along with the range of obliquity

variation when η � 1, obtained from numerical integrations. Equation (3.17)

well captures the “average” value of obliquity following resonant excitation.

In the example shown in Fig. 3.4, ŝ? and l̂1 were initially aligned and librat-

ing around θ1. When ŝ? and l̂1 are initially slightly misaligned and circulating

around θ1 (with small initial obliquity, θ0 . 10◦), the spin axis is eventually be

captured into libration around θ1, after which the evolution proceeds very sim-

ilarly to the case with zero initial obliquity. Thus, the post-resonant obliquity

variation does not depend sensitively on the initial obliquity, as long as the ini-

tial obliquity is not very large.

3.4 Spin-Orbit Dynamics for Comparable S? and L1

The previous section considered the idealized case where S? � L1, so that the

torque from ŝ? on l̂1 vanishes. This simplified problem serves as a useful refer-

ence point in understanding the dynamics of systems with comparable S? and

L1. For the HJ/WJ systems of interest in this paper S? and L1 may be compa-

rable for rapidly rotating stars, although nearly always satisfying S? . L1. For

the remainder of the paper we undertake numerical integrations of the “real”
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Figure 3.5: Solid curve: Average value of θ following resonant excitation, as cal-
culated from the area of the separatrix when θ1 and θ4 merge (equation [3.17]).
Dashed curves: variation of θ obtained from numerical integrations. Since the
system is in the weak-coupling regime after resonant excitation, the final obliq-
uity variation is simply 2I .

system, accounting for the torque on l̂1 due to ŝ? (see equations [3.1] - [3.3]),

while allowing the stellar spin to decrease via magnetic braking according to

equation (3.7). In Section 3.4.1 we extend the previous Cassini state analysis

and derive results for generalized Cassini states, accounting for the effect of the

spin on the orbit of the inner planet. We show that this “real” system behaves

qualitatively similar to the idealized problem, with a similar Cassini state tran-

sition coinciding with resonant obliquity growth. In Section 6.4 we undertake

numerical integrations and obtain quantitative results for generating spin-orbit
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misalignment for HJs and WJs with external companions of varying properties.

3.4.1 Cassini States for Finite S?/L1 and an Evolution Example

Generalized Cassini states when S? and L1 are comparable were studied before

by Boué & Laskar (2006) and Correia (2015). In equilibrium, ŝ?, l̂1, and l̂p are

coplanar, as in the case when S? � L1. This coplanar configuration must be

maintained through time (ŝ?, l̂1, and l̂p simply precess as a fixed plane in inertial

space). We therefore require

d

dt

[
ŝ? · (l̂1 × l̂p)

]
= 0. (3.18)

After some algebra and substituting in the equations of motion (see equations

[3.1] - [3.3]), the equilibrium condition in equation (3.18) can be written as

ω1p

ω?1
cos I

[
cos I cos(θ − I)− cos θ

]
+
S?
L1

cos θ

[
cos I − cos(θ − I) cos θ

]
− sin I sin θ

[
cos θ − L1

Lp

ω1p

ω?1
cos I

]
= 0. (3.19)

Equation (3.19) specifies the Cassini state obliquities, valid for general S?/L1,

and L1/Lp. In the limits S?/L1 � 1 and L1/Lp � 1, equation (3.19) reduces to

equation (3.14). Fig. 3.6 shows the generalized Cassini states as a function of

ω1p/ω?1 ∝ ε?1, for a fixed I = 20◦, L1/Lp = 0.3, and various values of S?/L1. Fix-

ing the ratio S?/L1 while varying ω1p/ω?1 is admittedly somewhat artificial, but

allows for a straightforward comparison with the case of S?/L1 = 0 explored

previously in Section 3. The number of Cassini states as a function of coupling

strength, as well as the obliquity values are qualitatively similar for different
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Figure 3.6: Generalized Cassini state obliquities as a function of the coupling
parameter ω1p/ω?1, obtained from equation (3.19). We have fixed I = 20◦ and
L1/Lp = 0.3. The number of Cassini states as a function of coupling strength,
as well as the obliquity values themselves are qualitatively similar for different
values of S?/L1. For S?/L1 = 0.5, additional retrograde equilibrium states exist
for ω1p/ω?1 . 0.2.

values of S?/L1. When S?/L1 is of order unity, additional retrograde equilib-

rium states emerge, but they are not expected to strongly affect the obliquity

evolution for systems that start out with spin-orbit alignment, as considered in

this paper.

Figure 7.3 shows an example of resonant obliquity excitation for an inner

planet with m1 = MJ , a1 = 0.2 AU, and an external perturber with mp = MJ,

ap = 10 AU, and ep = 0. The mutual inclination between the two planets

is initially I0 = 30◦, and the stellar spin period is initially P?,0 = 3 days, so
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that ε?1 ' 0.1 at the start of the integration. Inspection of Fig. 7.3 reveals that

the obliquity evolution is quite similar to the idealized example presented in

Fig. 3.4: At early times, the spin and orbit are strongly coupled, and the spin

axis librates closely around the instantaneous Cassini state 1 (θ1, as determined

by equation [3.19]). Eventually, when the coupling parameter ε?1 becomes of or-

der unity, the Cassini states θ1 and θ4 merge. At this point, the obliquity jumps

to a large value. Following this resonant excitation, when the spin and orbit

become more weakly coupled, the obliquity oscillates between a minimum and

maximum value.

One new feature in the dynamical evolution that emerges when S? ∼ L1

(and not captured in the idealized problem discussed in Section 3), is damping

of the mutual inclination. As is evident from the bottom panel of Fig. 7.3, the

mutual inclination decreases with time, with a sharp decline at t ' 0.8 Gyr,

coinciding with the resonant obliquity growth. This decrease in inclination can

be understood as follows: The system initially librates around the Cassini state

θ1, with θ1 < 0, so that ŝ?, l̂1, and l̂p are (in an average sense) coplanar, with ŝ?

and l̂p located on the opposite sides of l̂1; see Fig. 3.2. As ε?1 increases (due to

stellar spin-down), |θ1| increases, so that ŝ? and l̂1 are pushed apart. This then

implies that l̂1 is pushed closer to l̂p, and I must decrease. By manipulating

equations (3.1)-(3.3), we can derive expressions for d(ŝ? · l̂1)/dt = d cos θ/dt and

d(l̂1 · l̂p)/dt = d cos I/dt, yielding the change in I compared to the change in θ:

dI

dθ
= −S?

L1

ω?1
ω1p

(
cos θ sin θ

cos I sin I

)
. (3.20)

At late times, once the star has spun down, the quantity S?ω?1/L1ω1p becomes

small, and the decrease in inclination ceases, although the inclination may still

undergo oscillations. Resonant excitation of stellar obliquities thus tends to

erase the mutual inclination between the inner planet and outer perturber.
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Figure 3.7: Example of resonant obliquity excitation for a system with finite
S? and L1. The top panel shows the obliquity θ, the middle panel shows the
phase of ŝ? relative to l̂1 (φ), and the bottom panel shows the mutual inclination
between m1 and mp (I). The inner planet is a WJ, with m1 = MJ , a1 = 0.2 AU,
and the external perturber has mp = MJ , ap = 10 AU, and ep = 0, with an initial
inclination (with respect to the orbit of m1) I0 = 30◦. The initial stellar spin
period is P?,0 = 3 days. As the stellar spin decreases due to magnetic braking,
θ evolves in a manner qualitatively similar to the idealized example shown in
Fig. 3.4, with the spin axis librating around the instantaneous Cassini state 1
(θ1). Eventually θ1 merges with θ4, and the obliquity is excited to a large value.
The increase in obliquity is accompanied by a decrease in mutual inclination.
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3.4.2 Results for HJs and WJs with External Companions

Having demonstrated in Fig. 7.3 a typical example of resonant obliquity excita-

tion (accompanied by a decrease in mutual orbital inclination), we next explore

the parameter space for HJs/WJs with external companions of varying proper-

ties. All results in this section have been initialized with aligned stellar spin and

orbital axes (θ = 0).

To start, we set both the planet and perturber masses to 1MJ , and consider

first an inner planet with a1 = 0.05 AU (a canonical HJ) and next an inner

planet with a1 = 0.2 AU (a canonical WJ). We set the initial stellar spin pe-

riod to P?,0 = 3 days, and explore various initial inclinations (I0 = 10◦−40◦) and

perturber semi-major axes. In all cases, we integrate the equations of motion

for a timespan of 5 Gyr4, and record the “final” (between 4.5 - 5 Gyr) range of

variation of the spin-orbit angle, min(θ), max(θ), and the final variation of the

mutual orbital inclination, min(I), max(I).

Results for the canonical HJ case (with a1 = 0.05 AU) are depicted in the left

panels of Figure 3.8. For a close perturber with ap . 0.5 AU, the spin and orbit

are relatively weakly-coupled (ε?1 & 1) throughout the integration span. After 5

Gyr, the obliquity oscillates, with the final degree of variation depending on the

initial mutual inclination, roughly in the range 0−2I . A more distant perturber,

at ap ' 0.75 − 1.75 AU, induces resonant obliquity excitation, with the final

variation of θ exhibiting a complicated dependence on ap and I0. The obliquity

excitation is often accompanied by a dramatic decrease in mutual inclination.

For example, when I0 = 30◦ and ap ' 1 − 1.3 AU, the final mutual inclination

4Since the spin-down rate is quite slow after ∼ 1 Gyr due to the P? ∝ t1/2 dependence, these
results are not particular sensitive to the chosen integration timespan of 5 Gyr.
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is less than 5◦. For perturbers beyond ap ' 1.75 AU, the spin and orbit are

always strongly coupled, so that the perturber is ineffective in exciting spin-

orbit misalignment.

The results for the canonical WJ case (with a1 = 0.2 AU), shown in the right

panels of Fig. 3.8, are qualitatively similar to those for the HJ case. Given the

larger value of a1 for the WJ and the sensitive dependence of the spin preces-

sion on semi-major axis, resonant obliquity excitation may occur for much more

distant (weaker) perturbers, with ap in the range ∼ 5 − 13 AU. For both the

canonical HJ and WJ, a sufficient initial inclination is needed to generate a sub-

stantial obliquity. For example, a perturber inclined by 10◦ generates only a

modest obliquity (. 30◦). To produce a retrograde obliquity (& 90◦) requires an

initial inclination of at least 20◦ − 30◦.

Both the HJ and the WJ cases exhibit an abrupt decrease in obliquity excita-

tion for perturbers beyond a maximum distance. The maximum effective per-

turber semi-major axis ãp,max may be estimated by requiring that ε?1(5Gyr) & 1,

so that (see equation [3.8])

ãp,max ' 1.5 AU

(
a1

0.05 AU

)3/2(
mp

m1

)1/3

. (3.21)

For ãp & ãp,max, the perturber is unable to excite spin-orbit misalignment due to

the strong coupling between ŝ? and l̂1 throughout the stellar spin evolution.

Finally, we conduct a larger parameter survey, and examine the steady-state

distribution of stellar obliquities and mutual orbital inclinations by plotting the

values of θ and I at a random time between [0 − 5] Gyr. We sample the param-

eters in the following ranges: a1 = [0.05 − 0.5] AU, ap = [10 − 100]a1, ep = 0,

mp = [0.1 − 10]MJ , I0 = 10◦ − 40◦, and the initial stellar spin period in the

observationally-motivated range P?,0 = 1 − 10 days (see, e.g. Fig. 1 of Gal-
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Figure 3.8: Obliquity excitation as a function of perturber semi-major axis,
showing various initial inclinations, as labeled. The planet and perturber
masses are m1 = mp = 1MJ , and the initial stellar spin period is P?,0 = 3 days.
The left panels show results for an inner planet with a1 = 0.05 AU (a canonical
HJ), and the right panels show an inner planet with a1 = 0.2 AU (a canonical
WJ). The top panels show the final range of obliquities (between θmin and θmax)
at 4.5-5 Gyr, and the bottom panels show the final mutual inclination variation
at 4.5-5 Gyr. To excite substantial spin-orbit misalignment, an initial inclination
I0 & 20◦ is needed, and the perturber must be located sufficiently close (see
equation [3.21]). Obliquity excitation (top panels) is accompanied by a decrease
in mutual inclination (bottom panels). In some instances, the initial inclination
is almost completely erased.
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let & Bouvier, 2013). Given the large uncertainties in the statistical properties

of long-period giant planets, this experiment is not meant to serve as a precise

quantitative prediction for HJ/WJ obliquities, but rather to identify the orbital

geometries that may lead to high obliquities. We discard any systems that do not

satisfy the stability condition given by Petrovich (2015c). To avoid integrating

systems that clearly will maintain spin-orbit alignment for the entire integration

span, we also discard systems that satisfy ε?1(P? = 30d) < 0.01.

Figure 3.9 shows the results of this parameter survey. The top left panel de-

picts the main result, with the perturber “strength” ap/m
1/3
p versus the inner

planet semi-major axis a1, and the color indicating the value of the obliquity at

a random time. The grey line shows the analytic estimate for the maximum per-

turber strength that may induce changes in the obliquity (see equation [3.21]).

The analytic estimate is in good agreement with the numerical results: Pertu-

bers beyond ap,max are unable to generate high obliquities. The bottom left panel

shows the steady-state distribution of obliquities (at a random time). Recall that

the initial distribution of obliquities is a δ-function at θ = 0. Due to the pres-

ence of the perturber, a wide range of obliquities is generated, with a maximum

obliquity of ∼ 113◦. For systems that undergo resonant excitation, the degree

of obliquity excitation is highest for the weaker perturbers (near the grey line

of the top left panel of Fig. 3.9). This occurs because the amount of obliquity

growth increases with decreasing S?/L1. Since the systems with weaker per-

turbers encounter the resonance at a later time (when S?/L1 is smaller), such

systems tend to result in higher obliquities.

The results for the steady state inclinations are depicted in the upper and

lower right panels of Fig. 3.9. Recall that the distribution of initial inclinations
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(I0) is chosen to be uniform in 10◦ − 40◦. Examining the distribution of incli-

nations (lower right panel), obliquity excitation leads to decreased inclinations,

with a removal of points from the highest inclination bins (∼ 30◦− 40◦), and ad-

dition of points at the lowest inclination bins (0− 10◦). In some cases, the initial

inclination is completely erased, as indicated in the upper right panel.

Recall that in this paper the range of initial inclinations is restricted to

I0 < 40◦, so that Lidov-Kozai eccentricity oscillations have no chance of devel-

oping. However, the minimum inclination allowing Lidov-Kozai oscillations is

often significantly larger than 40◦, depending on the rate of apsidal precession

due to GR compared to the apsidal precession due to the perturber (e.g. Liu et

al., 2015). As a result, qualitatively similar results to those shown in this paper

may often occur for I0 > 40◦, but with even larger excitement of obliquity. Fur-

thermore, if Lidov-Kozai cycles do arise, the evolution of the spin axis becomes

chaotic (Storch et al., 2014; Storch & Lai, 2015), so that the full possible range of

obliquities (0◦ − 180◦) may in some circumstances be reached.

3.5 Summary & Discussion

In this paper we have studied a new mechanism for generating spin-orbit mis-

alignments in HJ and WJ systems with external planetary companions via reso-

nant excitation. Starting from initial spin-orbit alignment, we evolve the stellar

spin axis and the orbital angular momentum axes of both planets (the HJ/WJ

and outer perturber), accounting for the gravitational torques between the inner

and outer planets and the oblate host star, as well as stellar spin-down due to

magnetic braking. For appropriate companion semi-major axis and mass (see
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Figure 3.9: Parameter survey of obliquity excitation and inclination decay in
systems consisting of a host star, a HJ or WJ, and an external perturber. We
integrate the full secular equations of motion for a duration of time randomly
chosen between 0− 5 Gyr and record the value of the obliquity θ (the angle be-
tween ŝ? and l̂1) and inclination I (the angle between l̂1 and l̂p). We fix the inner
planet mass m1 = 1MJ and vary the initial spin period uniformly in the range
P?,0 = 1 − 10 days, the initial mutual inclination uniformly in I0 = 10◦ − 40◦,
and the inner planetary semi-major axis in a1 = 0.05 − 0.5 AU (where HJs are
defined to have a1 < 0.1 AU and WJs have a1 > 0.1 AU). We vary the per-
turber mass in the range mp = 0.1− 10MJ and the semi-major axis in the range
ap = (10 − 100)a1. Top left: Perturber “strength” ap/m

1/3
p vs inner planet semi-

major axis a1. The color of the points indicates the obliquity θ at a random time.
The dashed grey line indicates the analytic estimate for the perturber strength in
order to affect the obliquity (see equation [3.21]). Top right: Steady-state inclina-
tion I versus initial inclination I0, illustrating how resonant obliquity excitation
can erase mutual inclinations. Bottom panels: Distributions of steady-state stel-
lar obliquities (left), and mutual inclinations (right). The thick black histograms
show all systems, while the red (blue) histograms show results for HJs (WJs).
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Fig. 3.1), the inner system transitions from strong spin-orbit coupling (ε?1 � 1;

see equation [3.8] for the definition of this “coupling parameter”) at earlier times

to weak coupling (ε?1 & 1) at later times as the star spins down. Appreciable

stellar obliquity may be excited during resonance crossing (ε?1 ∼ 1), when the

stellar spin precession rate (around the inner planet) is comparable to the or-

bital precession rate of the inner planet (due to the outer perturber). Following

the resonant obliquity growth, the spin and orbit are weakly coupled, and the

stellar obliquity oscillates between a minimum and a maximum, whose values

depend on the details of the prior (pre-resonant) spin history.

Insight into the resonant growth of obliquity can be gained by considering

the idealized case where the stellar spin angular momentum S? is much less

than the angular momentum of the inner planet (HJ or WJ) L1 (Section 3). In

this case, the stellar spin axis closely follows one of the Cassini (equilibrium)

states, as stellar spin-down gradually reduces the spin-orbit coupling strength,

until a separatrix crossing (at the resonance ε?1 ∼ 1) leading to rapid obliquity

excitation (see Fig. 3.4). The final average value of spin-orbit misalignment can

be computed analytically (see Fig. 3.5).

For realistic HJ/WJ systems, S? can be comparable to L1, but the spin-orbit

dynamics remain qualitatively similar to the S? � L1 case. In particular, an

initially aligned system follows a generalized Cassini state (valid for arbitrary

S?/L1; see Fig. 3.6) until the resonance crossing, leading to rapid obliquity exci-

tation (see Fig. 7.3). An important new feature for systems with S? ∼ L1 is that

the inclination angle between the inner planet and the outer companion tends

to decrease as a result of obliquity growth (see Figs. 7.3 - 3.8).

Concerning spin-orbit misalignments of HJ and WJ systems, our main find-
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ings are as follows:

• Due to their close proximity to the host star, HJs have orbital axes that

are strongly coupled to the host star spin axis (note the strong semi-major

axis dependence in the coupling parameter ε?1 in equation [3.8]). As a

result, for any kind of obliquity growth to be possible, a strong perturber

is required (see equation [3.21] and Figs. 3.1 and 3.8 - 3.9). For example,

a 1MJ HJ with semi-major axis 0.05 AU requires that a 1MJ perturber be

located within ∼ 1.75 AU.

• In contrast, the spin-orbit coupling in WJ systems is weaker, so that dis-

tant or low-mass perturbers may excite obliquities. For example, a 1MJ

WJ with semi-major axis 0.2 AU requires that a 1MJ perturber be located

within ∼ 13 AU (see Figs. 3.1 and 3.8 - 3.9).

• For both HJ and WJ systems, external perturbers must have modest incli-

nations (I0 & 20◦) in order to produce substantial obliquity growth (see

Figs. 3.8 and 3.9).

• Obliquity growth is generally accompanied by a decrease in mutual or-

bital inclination between the inner planet and outer perturber (see Figs. 7.3

- 3.9). Resonant obliquity growth may thus erase high initial mutual incli-

nations in such systems.

This paper has focused on planetary companions to HJs/WJs, but stellar

companions may also resonantly excite obliquities. For HJs, a stellar-mass com-

panion must be very close (within ∼ 10 − 20 AU, due to the dependence on

perturber properties as ãp/m
1/3
p ). Since such close stellar companions may in-

hibit planet formation in the first place (Wang et al., 2014), it is unclear to what
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extent they contribute to HJ obliquities. In contrast, more distant (∼ hundred

AU) stellar-mass companions to WJs may easily lead to resonant obliquity ex-

citation. Such stellar companions may be especially effective because they are

expected to follow an isotropic distribution in inclination, so that a substantial

fraction of binary perturbers may have high inclinations.

Throughout this paper, we have fixed the mass of the host star toM? = 1M�.

Hot Jupiter obliquities exhibit a well-known dependence on stellar effective

temperature (Winn et al., 2010), with HJs around cool stars (Teff . 6200 K) hav-

ing low obliquities, and HJs around hot stars having high obliquities (see Winn

et al. 2017 and Muñoz, & Perets 2018 for recent discussions and statistics of this

trend). Hot stars do not experience strong magnetic braking (likely due to the

absence of a surface convective zone), and remain rapidly rotating throughout

their lifetimes. As a result, resonant obliquity excitation is unlikely to occur

around hot stars, because it requires that the perturber properties be somewhat

fine-tuned. Thus, the dependence of resonant excitation on stellar effective tem-

perature appears to yield the opposite trend compared to observations. This

fact, together with the requirement that HJs need quite strong perturbers to

have their obliquities raised at all, implies that resonant obliquity excitation is

certainly not the entire story in HJ obliquities. However, it may nonetheless be

at work in individual misaligned systems. Indeed, exceptions to the observed

obliquity-effective temperature correlation do exist (e.g. WASP-8b, Queloz et al.

2010, WASP-2b, Triaud et al. 2010).

The story for WJs may be very different. As noted previously in Section

1, a large fraction of WJs are observed to have external giant planet compan-

ions (Bryan et al., 2016), many of which have the appropriate combinations of
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semi-major axis (∼ 5 − 20 AU) and mass to cause resonant obliquity excita-

tion. Provided that such companions are sufficiently inclined, we predict that

many WJs around cold stars have significant stellar spin-orbit misalignments

due to resonant excitation, whereas hot stars would not have their obliquities

resonantly excited, and tend to have low obliquities. So far, WJ stellar obliqui-

ties are largely un-probed. In the near future, NASA’s TESS mission (Ricker et

al., 2014) will discover a large number of WJs/HJs around bright stars. These

systems will be amenable to Rossiter-McLaughlin measurements of spin-orbit

misalignments, in addition to providing better statistics on the orbital param-

eters. These new observations will help determine whether resonant obliquity

excitation by external companions play an important role in WJ systems.

Regardless of the extent to which WJ obliquities are probed in the near fu-

ture, resonant obliquity excitation has interesting implications for exoplanetary

systems, due to the possibility that high initial inclinations can be erased. The

mutual inclinations (& 20◦) needed for resonant excitation must be generated

either via a scattering event of three or more giant planets or perturbations from

a stellar companion. As observations continue to constrain mutual inclinations

in multi-planet systems, it is useful to keep in mind that such inclinations may

not reflect the “initial” (i.e. previously higher inclinations following a scatter-

ing event or excitation from a nearby star), if resonant obliquity excitation has

occurred.
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CHAPTER 4

MODERATELY ECCENTRIC WARM JUPITERS FROM SECULAR

INTERACTIONS WITH EXTERIOR COMPANIONS

4.1 Introduction

Despite over twenty years of observations, the origins and dynamical histories

of close-in (. 1 AU) giant planets remain elusive. Hot Jupiter (HJ, giant planets

with semi-majors axes . 0.1 AU) formation continues to be a major topic in ex-

oplanet research. The general consensus is that HJs cannot form in their present

locations, and must instead have migrated from farther out (although see Boley

et al. 2016; Batygin et al. 2016), but whether there exists a dominant migration

mechanism is unclear. Proposed mechanisms include disk-migration, and var-

ious forms of “high-eccentricity migration” in which the planet’s eccentricity

is excited to a large value, leading to tidal dissipation during pericenter pas-

sages and orbital decay. Warm Jupiters (WJs, with semi-major axes in the range

∼ 0.1− 1 AU) raise the same formation questions as HJs. Proposed channels of

WJ formation include disk migration, high-eccentricity migration, scatterings,

and in-situ formation. If multiple channels of WJ formation exist, whether one

channel produces most of the observed WJs is of great interest but remains un-

known.

Many WJs are moderately eccentric, with e ∼ 0.2 − 0.7. These eccentricities

are difficult to explain with both in-situ formation and disk-driven migration.

This chapter is adapted from Anderson & Lai (2017)
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High-eccentricity migration has therefore been proposed as a major formation

mechanism for WJs. If WJs are undergoing high-eccentricity migration, they

must reach sufficiently small pericenter distances (. 0.05 AU) to experience

tidal dissipation and orbital decay. Most WJs are not sufficiently eccentric to

achieve such small pericenter distances, but this issue can be circumvented if

the planets are undergoing secular eccentricity oscillations induced by exterior

companions, and are currently observed in a lower eccentricity phase. The re-

quirement that the minimum pericenter distance be small enough such that tidal

decay may occur within the lifetime of the host star constrains the properties of

the perturbers, requiring them to be sufficiently close and/or massive (Dong et

al., 2014).

However, the proposal that most WJs reach their current orbits through

high-eccentricity migration suffers from some problems. Antonini et al. (2016)

find that most observed WJs with exterior planetary companions would not

be stable if the WJ originated beyond ∼ 1 AU and subsequently underwent

high-eccentricity migration. Furthermore, population synthesis studies of HJ

formation by various high-eccentricity migration mechanisms typically yield

very low fractions of planets at WJ distances (Petrovich 2015b, Petrovich 2015a,

Anderson et al. 2016, Hamers et al. 2017, Hamers 2017; although see Dawson

& Chiang 2014, Petrovich & Tremaine 2016). For example, studies of high-

eccentricity migration due to Lidov-Kozai oscillations from stellar perturbers

(Petrovich, 2015b; Anderson et al., 2016) produce HJs at rates of a few percent,

but essentially no WJs. This arises because, for a stellar perturber at a distance

of ∼ few hundred AU, once the planetary orbit shrinks to WJ distances, eccen-

tricity oscillations have ceased due to general relativistic precession, and the

eccentricity has frozen to very high value (∼ 0.99), after which the migration to
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HJ distances proceeds rapidly (see, e.g. Fig. 1 of Anderson et al. 2016). Hamers

et al. (2017) find a similarly negligible amount of WJs compared to HJs for high-

eccentricity migration due to secular chaos in systems of multiple giant planets.

Observations of giant planets paint a very different picture. Despite the exis-

tence of a “period valley” of giant planets with orbital periods of 10 − 20 days

(e.g. Udry et al., 2003; Jones et al., 2003; Santerne et al., 2016), the total occurrence

rate of WJs (with semi-major axes in the range 0.1AU-1AU) exceeds that of HJs

(a < 0.1 AU see Santerne et al., 2016, Fig. 8). We note that the ratio of WJs to HJs

does depend somewhat on the definition of a WJ. Taking the RV planets listed

on exoplanets.org2 with m sin i > 0.5MJ, we find that the WJ/HJ ratio is ∼ 3.9.

If we adopt a more conservative definition of a WJ, with 0.1AU < a < 0.5AU,

the WJ/HJ ratio is∼ 1.6. Accounting for selection effects would further increase

the WJ/HJ ratio.

The observed WJ/HJ ratio is thus in contradiction with most population syn-

thesis results. Considering migration due to Lidov-Kozai oscillations from a

planetary companion, Petrovich & Tremaine (2016) produce roughly twice as

many HJs as WJs. This WJ/HJ ratio is the highest found in a population syn-

thesis thus far, but may result in part from the rather specific semi-major axes

selected for both planets, chosen so that eccentricity oscillations are not frozen

by general relativity at WJ distances. The semi-major axis of the outer planet

in particular may strongly affect the migration rate at WJ distances, because it

helps determine the orbital distance at which eccentricity oscillations freeze to

a large value (see Anderson et al., 2016, Section 3.1), after which the planet mi-

grates inward to HJ territory quickly, and spends a negligibly small amount of

time at WJ distances.
2accessed on August 22, 2017.
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The above difficulties in forming WJs by high-eccentricity migration leads

us to consider the possibility that most WJs form in-situ, by disk migration, or

some combination of these two processes. At typical WJ semi-major axes (∼ 0.3

AU), theoretical work shows that sufficiently massive rocky cores can accrete

gas and undergo runaway accretion (Lee et al., 2014), although growing the

core quickly enough before the gas disperses may be challenging (Lee & Chiang,

2016). In-situ formation of WJs was also recently argued by Huang et al. (2016),

who found that close, rocky neighbors are common in observed WJ systems.

However, both in-situ formation and disk-driven migration have difficulty in

explaining eccentric WJs. Distinct populations of WJs have previously been pro-

posed, with the eccentric WJs forming via some form of high-eccentricity migra-

tion, and the circular WJs forming by a different channel (Dawson & Murray-

Clay, 2013; Petrovich & Tremaine, 2016).

This paper considers the scenario in which most WJs reach their current sub-

AU orbits either by in-situ formation or disk migration, after which a subset of

WJs undergo secular eccentricity oscillations driven by an exterior companion –

many such companions have been detected through radial velocity studies (see

Section 4.3). We examine the possibility of raising the eccentricities of WJs by

secular interactions with distant planetary companions, so that the eccentricity

varies between e ' 0 and a maximum value e = emax. In order for a WJ with ob-

served eccentricity eobs to have its eccentricity raised by an external (and possi-

bly undetected) companion, the maximum eccentricity must satisfy emax ≥ eobs.

This places constraints on the properties of the planetary perturber, in terms of

its mass, separation, inclination, and eccentricity. We focus exclusively on secu-

lar perturbations, because in-situ scatterings have been shown to be ineffective

in raising the eccentricities of close-in planets (Petrovich et al., 2014).
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The role of external companions in raising the eccentricities of WJs has been

studied before. However, most previous works (e.g. Dong et al., 2014; Dawson

& Chiang, 2014; Antonini et al., 2016; Petrovich & Tremaine, 2016) have focused

on the situation where WJs achieve very small pericenter distances such that

the orbit decays via tidal dissipation (and are thus in the process of becoming

HJs). If we do not require the WJs to attain such small pericenter distances, and

instead focus on generating more modest eccentricities (e ' 0.2 − 0.5), the re-

quirements on the external companion are less stringent. Note that recent work

has considered generating eccentric WJs in systems with three or more giant

planets through relatively violent scattering events (Mustill et al., 2017). In con-

trast, in this paper we focus on systems of two widely-spaced planets where

scattering does not occur, and we identify the necessary properties of external

planets in generating modest eccentricities in WJs through secular processes.

This scenario requires that the outer planet have a non-zero eccentricity or in-

clination; such eccentricities/inclinations may result from either an initial scat-

tering event with three or more giant planets, or perturbations from a tertiary

stellar companion. Note that in order for a tertiary stellar companion to increase

the eccentricity/inclination of an outer giant planet via secular interactions, it

must be sufficiently close/massive so that the stellar companion induces peri-

center precession in the outer planet that overcomes the precession induced by

the WJ.

This paper is organized as follows. In Section 4.2 we summarize our method

and relevant analytic expressions for identifying the requirements for an exter-

nal companion to increase the eccentricity of a WJ. We first consider coplanar

systems (Section 6.2.5), so that eccentricity oscillations (including the effect of

an apsidal precession resonance) can be studied analytically. We then consider

131



inclined systems, for which octupole-level Lidov-Kozai oscillations may arise,

requiring numerical integrations. Section 4.3 considers the sample of observed

and eccentric WJs with detected outer companions, and identifies the mutual

inclinations necessary to raise the eccentricity of the WJ to the observed value.

In Section 4.4 we consider small neighboring planets to WJs, and their role in

suppressing eccentricity oscillations. We conclude in Section 4.5.

4.2 Secular Interactions of Warm Jupiters With Distant Planet

Companions

4.2.1 Setup and Method

We consider a system of two well-separated giant planets m1 (the WJ) and m2

(the exterior perturber), orbiting a star of mass M?. We denote the semi-major

axis and eccentricity of m1 and m2 as ain, ein and aout, eout respectively. The plan-

ets may have a mutual inclination I , defined through cos I = L̂in · L̂out, where

L̂in and L̂out are unit vectors along the angular momenta Lin and Lout. The orbits

are also specified by the eccentricity vectors ein and eout. For ease of notation,

we frequently omit the subscript “in”, so that e = ein, a = ain, etc.

In general, we follow the evolution of (Lin, ein) and (Lout, eout) due to the

mutual interaction between m1 and m2 up to octupole order, using the vector

equations derived in Liu et al. (2015) (see also Petrovich, 2015b) . The eccentric-

ities of both planets may undergo periodic oscillations, with maximum eccen-

tricity of the inner orbit denoted by emax. The eccentricity oscillations occur on
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a characteristic timescale tk (the quadrupole “Kozai timescale”), given by

1

tk
=
m2

M?

a3

a3
out,eff

nin, (4.1)

where we have introduced an “effective” outer semi-major axis,

aout,eff ≡ aout

√
1− e2

out, (4.2)

and where nin =
√
GM?/a3 is the orbital mean motion of the inner planet.

Octupole effects are manifested by terms of order εoct, where

εoct =
M? −m1

M? +m1

a

aout

eout

1− e2
out

' a

aout

eout

1− e2
out

. (4.3)

We also include the short-range-forces (SRFs) introduced by general relativ-

ity and tidal distortion3 ofm1. These non-Keplerian potentials lead to pericenter

precession and introduce two additional parameters in the equations of motion:

εGR ' 0.1

(
M?

M�

)2(
m2

MJ

)−1(
a

0.3 AU

)−4(
aout,eff

3 AU

)3

, (4.4)

and

εTide '6.4× 10−5 k2

0.37

(
R1

RJ

)5(
M?

M�

)2(
m2

MJ

)−1

×
(

a

0.3 AU

)−8(
aout,eff

3 AU

)3

,

(4.5)

whereR1 and k2 are the radius and tidal Love number ofm1. See Anderson et al.

(2016) and Liu et al. (2015) for further details and the secular equations of mo-

tion. Since we focus on generating modest eccentricities in the inner planet via

secular interactions, we neglect dissipative tides, which act over much longer

timescales than the timescale for eccentricity growth, and only modify the WJ

orbit for pericenter distances much smaller than those of interest here.
3We do not consider the additional precession due to rotational distortion of eitherM? orm1,

because they are both smaller than the GR term (dominant at low eccentricities) and the tidal
term (dominant at high eccentricities).
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This paper aims to explain eccentric WJs by secular perturbations from ex-

terior giant planet companions. For an observed WJ with eccentricity e = eobs,

the constraint on an undetected outer companion can be obtained by calculating

emax for outer perturbers with varying properties, and requiring emax ≥ eobs. In a

similar vein, if a WJ with eobs does have a detected companion, we can identify

whether such a companion is capable of producing eobs, by checking whether

emax ≥ eobs. This latter idea is considered in Section 4.3 for observed WJs with

exterior companions.

In the following we consider a “canonical” WJ, with m1 = 1MJ and a = 0.3

AU, and explore various properties for the outer companion. Sections 6.2.5 and

5.3.1 consider coplanar systems, while Sections 4.2.4 and 4.2.5 consider inclined

systems. See Section 4.2.5 for the main results of Section 4.2.

4.2.2 Coplanar Systems

We begin with coplanar systems (I = 0). The maximum eccentricity of m1 (to

octupole order) is completely specified by energy and angular momentum con-

servation (Lee & Peale, 2003), without the need for numerical integrations of the

equations of motion. The total energy per unit mass, including the octupole-

order interaction potential between m1 and m2 and SRF effects for m1 is

Φ = ΦInt + ΦSRF, (4.6)

where

ΦInt = ΦQuad + ΦOct

=
Φ0

8

[
− 2− 3e2 +

15

8
e(3e2 + 4)εoct cos ∆$

]
,

(4.7)
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and

ΦSRF = ΦGR + ΦTide

= −εGRΦ0

j
− εTideΦ0

15j9

(
1 + 3e2 +

3

8
e4

)
.

(4.8)

Note that in Eqs. (6.33) and (4.8), we have defined

Φ0 =
Gm2a

2

a3
out,eff

, (4.9)

as well as j =
√

1− e2, and ∆$ ≡ $in − $out (difference in longitude of peri-

center of the inner and outer orbits). Unless the eccentricity reaches extreme

values (e & 0.9), the SRFs are dominated by the GR contribution, and to sim-

plify the remainder of the analytic discussion we ignore the tidal contribution

(note however that we always include it in the numerical integrations presented

in this paper).

Figure 4.1 shows the maximum eccentricity (emax) of the canonical WJ (with

m1 = 1MJ, a = 0.3 AU, and initial eccentricity e0 ' 0) as a function aout for

various outer planet masses and eccentricities. In general, emax increases with

decreasing aout, except for significant peaks at certain values of aout. These peaks

arise from the “apsidal precession resonance” (Liu et al., 2015b), which occurs

when the total apsidal precession rate of the inner orbit (which consists of the

precession driven bym2 and the GR contribution, $̇in = $̇12 +$̇GR) matches the

apsidal precession rate of the outer orbit ($̇out = $̇21). To quadrupole order, the

precession frequencies due to the secular interactions between m1 and m2 are

$̇12 =
3

4
α3nin

m2

M?

j

(1− e2
out)

3/2
(4.10)

and

$̇21 =
3

8
α2nout

m1

M?

2 + 3e2

(1− e2
out)

2
, (4.11)
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where α ≡ a/aout, and nin (nout) is the orbital mean motion of m1 (m2). The

precession of m1 due to GR is

$̇GR =
3nin

j2

GM?

ac2
. (4.12)

The resonance condition $̇in ' $̇out yields

3

4
α3nin

m2

M?

j

(1− e2
out)

3/2
+

3nin

j2

GM?

ac2

' 3

8
α2nout

m1

M?

2 + 3e2

(1− e2
out)

2
.

(4.13)

This resonance is only precisely defined in the limit ein, eout � 1, for which

Eq. (4.13) reduces to
m2

M?

' α1/2m1

M?

− 4α−3GM?

ac2
. (4.14)

In this limit, the peak eccentricity of m1 is [see Eq. (33) of (Liu et al., 2015b)]

epeak = eout,0

(
m2

m1

)1/2

α−1/4. (4.15)

For moderate values of e and eout, the resonance becomes “fuzzy” because

of the variations of e and eout during the secular evolution. Nevertheless, the

condition $̇in ' $̇out, with eout ' eout,0 and e ∼ 0 provides a good indicator for

the resonance, as long as the eccentricity of the WJ remains moderate (emax .

0.5).

For increasingly massive perturbers, the resonance cannot be achieved, un-

less the perturber semi-major axis is small. For the 5MJ perturber in Fig. 4.1,

the resonance can only occur when aout is comparable to a, where non-secular

effects clearly will be emerge and the stability of the system compromised.

To illustrate what kind of outer planet may be capable of increasing the ec-

centricity of the WJ through the apsidal precession resonance, Fig. 4.2 shows
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Figure 4.1: Maximum eccentricity of the WJ as a function of aout, for various
masses and eccentricities of the outer planet m2. The two planets are coplanar,
with the WJ (m1 = 1MJ) placed at a = 0.3 AU. The initial eccentricity of m2 is
eout,0 = 0.5 (solid), and eout,0 = 0.2 (dashed). The curves for the low mass per-
turbers (m2 = 0.1, 0.5MJ) have a distinctive spike, corresponding to an apsidal
precession resonance, where $̇in/$̇out ' 1. For the 5MJ perturber, the resonance
can only be achieved at small separations, where the secular approximation is
no longer valid.
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Figure 4.2: Contours of $̇in/$̇out = 1, indicating the combinations of outer
planet mass m2 and separation aout that may lead to an apsidal precession res-
onance and increased emax. In evaluating $̇in = $̇12 + $̇GR and $̇out = $̇21

(see Eqs. [4.10] - [4.12]), we have set ein = 0 and eout = eout,0 = 0.2 (black), and
0.5 (blue). The WJ has mass m1 = 1MJ and semi-major axis a = 0.3 AU (solid
curves), and a = 0.5 AU (dashed curves).

the approximate “resonance” condition (curves of $̇in/$̇out = 1, evaluated at

e = 0, eout = 0.2, 0.5. Combinations of (m2, aout) close to the lines may result in

eccentricity increases in the inner orbit. However, note that the resonance does

not guarantee large emax: If eout,0 is too small, epeak will necessarily be small (see

Eq. [4.15]).
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4.2.3 Coplanar Systems With Modest Initial Eccentricity

Here we examine how eccentricity growth in coplanar systems depend on the

initial eccentricity of the inner orbit. Li et al. (2014) have previously shown that

the inner planet can achieve extreme eccentricity without SRFs (the so-called

“coplanar-Kozai mechanism”). To obtain a simple criterion for large eccentricity

excitation, we approximate the outer planet eccentricity as constant. This is

justified since the change in jout =
√

1− e2
out is related to the change in jin =

√
1− e2 through

∆jout = −m1

m2

α1/2∆jin, (4.16)

and thus, the change in eout is often small compared to the change in e.

Suppose the inner planet starts with an initial e0 and ∆$0, and attains the

maximum eccentricity emax at ∆$ = 0.4 Energy conservation (Φ = constant; see

Eq. [4.6]) gives

εoct =
8

15

[
3(e2

max − e2
0)− 8εGR(j−1

0 − j−1
max)

emax(3e2
max + 4)− e0(3e2

0 + 4) cos ∆$0

]
, (4.17)

where jmax ≡
√

1− e2
max (note that jmax corresponds to the minimum value of

j). Therefore, to attain a certain value of emax, we require εoct ≥ εoct,min, with

εoct,min =
8

15

[
3(e2

max − e2
0)− 8εGR(j−1

0 − j−1
max)

emax(3e2
max + 4) + e0(3e2

0 + 4)

]
. (4.18)

Figure 4.3 shows εoct,min as a function of e0 for several values of εGR. Since

this paper considers the scenario where WJs form either in-situ or by disk mi-

gration, we expect low initial eccentricities, with e0 . 0.1. As a result, we see

from Fig. 4.3 that the outer planet must have a strong octupole (with εoct & 0.1)

to produce a moderate eccentricity (emax ∼ 0.5) in the WJ.
4By applying de/d∆$ = 0 in the energy conservation equation, it is easy to see that the

eccentricity extremum occurs at ∆$ = 0 or π.
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Figure 4.3: Minimum value of εoct (see Eq. [4.3]) required to raise the eccentricity
of the WJ from e0 to emax = 0.5; see Eq. (4.18).

We briefly comment on the possibility of extreme eccentricity excitation (and

the associated orbit flip) first discussed in Li et al. (2014). To achieve emax → 1,

Eq. (4.18) implies

εoct ≥
8

15

[
3(1− e2

0) + 8εGR(j−1
max − j−1

0

7 + e0(3e2
0 + 4)

]
. (4.19)

Setting εGR = 0 recovers the flip condition in Li et al. (2014) [see their Eq. (14)].

Since extreme eccentricities imply jmax � 1, the large value of εoct required by

Eq. (4.19) cannot be achieved by most dynamically stable systems. For example,
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the dynamical stability condition of Petrovich (2015c) is

aout(1− eout)

a(1 + e)
& 2.4

[
max

(
m1

M?

,
m2

M?

)]1/3(
aout

a

)1/2

+ 1.15. (4.20)

Considering a system with e0 = eout,0 = 0.5 and m1/M? = m2/M? = 10−3, and

using εGR ' 10−2 and jmax = 0.1 (note that these values lead to an extremely

conservative estimate of the ratio εGR/jmax), Eq. (4.19) implies aout/a . 1.2 AU,

whereas stability [Eq. (6.38)] requires aout/a & 5 AU. We conclude that SRFs

make extreme eccentricity excitation and orbit flipping highly unlikely for real-

istic systems.

4.2.4 Moderately Inclined Companions

Next we allow the outer companion to be inclined. When I0 6= 0, emax must be

determined numerically. The remaining results in this paper are obtained by

integrating the octupole-level vector equations of motion, evolving the eccen-

tricity and angular momentum vectors of both m1 and m2 (e.g. Liu et al., 2015).

For the inner orbit we also include apsidal precession introduced by GR and

tidal distortion of m1.

In order to capture the octupole-order effects, the equations of motion must

be integrated sufficiently long. In all of our calculations we integrate for a

timespan 10tk/εoct (multiple “octupole timescales”) and record the maximum

value of e. If the inner planet achieves a pericenter distance a(1 − e) < RTide .

2.7RJ(M?/m1)1/3 (e.g. Guillochon et al., 2011), we terminate the integration and

consider the planet tidally disrupted.

We integrate a grid of inclined systems in the range I0 ' 10◦ − 60◦, and vary

the separation aout of the outer planet. Figure 4.4 shows our numerical result
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for emax versus aout for the various inclinations, where the inner planet proper-

ties have been set to the canonical WJ values (m1 = 1MJ, a = 0.3 AU), and the

perturber has initial eccentricity eout,0 = 0.5, and mass m2 = 0.1MJ (top panel)

and m2 = 1MJ (bottom panel). For the 0.1MJ perturber and modest inclinations

(I0 . 30◦), the behavior is similar to the coplanar systems discussed in Sec-

tion 6.2.5. The sharp peaks in emax exhibited in Fig. 4.4 occur when $̇in ' $̇out

(cf. Fig. 4.1). For this set of parameters, the location of the peak eccentricity shifts

to smaller aout with increasing I0, until the inclination becomes large enough so

that Lidov-Kozai oscillations begin. This result, along with previous work (Liu

et al., 2015b) shows that the apsidal precession resonance remains effective for

moderately inclined systems, with I0 . 30◦.5

Of course, as in the coplanar case (Section 2.2), when the external companion

is too massive, the resonance peak disappears (see Fig. 4.1 and Eq. [4.14]).

4.2.5 General Inclinations: Lidov-Kozai Cycles

If the initial inclination I0 is sufficiently high, Lidov-Kozai (LK) eccentric-

ity/inclination oscillations may be induced (Lidov, 1962; Kozai, 1962), even

when the interaction between m1 and m2 is truncated to the quadrupole or-

der. (By contrast, eccentricity excitation in coplanar or low-inclination systems

operates only when the octupole effect is included.)

To quadrupole order, LK oscillations of general hierarchical triple systems,

including SRFs, can be determined analytically (Fabrycky & Tremaine, 2007;
5Similar peaks in eccentricity were seen in previous numerical calculations by Ford et al.

(2000) and (Naoz et al., 2013b). The physical explanation of these peaks in terms of “apsidal
precession resonance” was first discussed in Liu et al. (2015b) in the context of merging compact
binaries with tertiary companions.
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Figure 4.4: emax versus aout for various initial inclinations, as labeled, obtained
by integrating the octupole equations of motion. We have set e0 = 10−3,
eout,0 = 0.5, a = 0.3 AU, m1 = 1MJ, m2 = 0.1MJ (top panel), and m2 = 1MJ

(bottom panel). Each case is initialized with ωin and Ωin randomly chosen in the
range [0, 2π] (where ωin and Ωin are the argument of pericenter and longitude of
ascending node of the inner orbit, with the invariant plane defined by the ini-
tial orbital plane of the companion). For m2 = 0.1MJ and inclinations I0 . 30◦,
the behavior is qualitatively similar to the coplanar systems (see Section 6.2.5),
with a peak eccentricity (maximum value of emax) corresponding to values of
aout satisfying $̇in/$̇out ' 1.
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Liu et al., 2015; Anderson et al., 2017). The behavior of emax as a function of I0

depends on two dimensionless parameters: the angular momentum ratio of the

inner and outer orbits,

η =

(
Lin

Lout

)
e=0

=
m1

m2

√
a

aout(1− e2
out)

, (4.21)

and the strength of the SRFs (e.g. εGR, εTide; see Eqs. [4.4] and [4.5]). The most

general expression for emax(I0) can be found in Anderson et al. 2017 (see their

Eqs. [20] and [23]). In particular, eccentricity excitation of the inner planet occurs

when I0 lies in the “LK window”, given by

(cos I0)− ≤ cos I0 ≤ (cos I0)+, (4.22)

where

(cos I0)+ =
1

10

(
− η +

√
60 + η2 − 80

3
εGR

)
, (4.23)

and

(cos I0)− =


1
10

(
−η −

√
60 + η2 − 80

3
εGR

)
, if η ≤ 2(1 + 2

3
εGR)

− 2
η

(
1 + 2

3
εGR

)
, otherwise.

(4.24)

In the above expressions, we have included only the SRF associated with GR.

When the octupole effect is included, the properties of the eccentricity-

inclination oscillations cannot be determined analytically, and the relation

emax(I0) and the associated “LK window” can be significantly modified. Nev-

ertheless, one analytical quadrupole result survives: The “limiting eccentricity”

elim, which is the peak of the emax(I0) relation, remains valid even when the

octupole terms are included (Liu et al., 2015; Anderson et al., 2017). This elim

(assuming e0 = 0) is given by

3

8
(j2

lim − 1)

[
− 3 +

η2

4

(
4j2

lim

5
− 1

)]
+

(
ΦSRF

Φ0

)e=elim
e=0

= 0, (4.25)
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where jlim =
√

1− e2
lim, and occurs at the inclination I0,lim, given by

cos I0,lim =
η

2

(
4

5
j2

lim − 1

)
. (4.26)

(see Anderson et al., 2017). Note that elim is not achievable if Eq. (4.26) yields

unphysical values of cos I0,lim.

To examine how the quadrupole “LK window” (Eqs. [4.23] - [4.24]) may be

modified by octupole, we conduct a large set of numerical integrations for the

canonical WJ (m1 = 1MJ, a = 0.3 AU), for perturber masses m2 = 0.1, 1, 10MJ.

For each perturber mass, we explore several values of the initial eccentricity

eout,0, and sample over the full range of initial inclinations I0 and a wide range

of separations aout. Figure 4.5 shows the results in the (I0, aout) parameter space,

where we plot the value of emax achieved over the integration span (10tk/εoct).

For reference, the quadrupole “LK window” is also depicted, as calculated from

Eqs.(4.23) - (4.24). Non-zero emax outside these inclination limits arises from oc-

tupole effects, either from the apsidal precession resonance (see Section 6.2.5)

for low inclination systems, or from octupole-level LK oscillations. For the low-

est value of eout,0 considered (eout,0 = 0.25), the systems are well-described by

the quadrupole limit. As eout,0 increases, deviations from the quadrupole pre-

dictions begin to emerge, and non-zero emax may be generated well outside of

the quadrupole LK window, especially when eout,0 = 0.75. Notice that the re-

sults are approximately symmetric around I0 = 90◦ when m2 = 1, 10MJ, but

exhibit considerable asymmetry when m2 = 0.1MJ. This arises because in the

test-particle limit (η � 1) the equations of motion are symmetric around 90◦,

but this symmetry disappears when η ∼ 1 (e.g. Liu et al. 2015).

Inspection of Fig. 4.5 allows us to identify the types of outer planetary

perturbers necessary to raise the eccentricity of a canonical WJ. To generate
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emax ' 0.5, relatively high (I0 & 50◦) mutual inclinations are needed. A Jupiter-

mass outer planet must be located within ∼ 10 AU, unless it is extremely eccen-

tric, with eout = 0.75. A sub-Jovian mass planet (m2 = 0.1MJ) must be located

within ∼ 3 AU, most likely in a retrograde orbit. Such a sub-Jovian mass per-

turber is therefore ineffective in generating many eccentric WJs, because only

narrow ranges of separations and inclinations lead to substantial eccentricity

increases. In contrast, a massive (∼ 10MJ) perturber can generate high eccen-

tricities at aout ∼ 15 AU and beyond.

Figure 4.6 depicts the same numerical experiments as in Fig. 4.5, but shows

the fraction of the total integration time that the WJ spends above a specified

eccentricity. Figure 4.6a shows the fraction of time spent above e = 0.2 [f(e >

0.2)], and Fig. 4.6b shows the fraction of time spent above e = 0.5 [f(e > 0.5)].

The fraction of time spent above e = 0.2 is relatively high (& 0.5) for many

separations and inclinations, as long as the perturber mass is 1MJ or greater.

The fraction of time spent above e = 0.5 is much lower, usually not exceeding

∼ 0.2.

We conclude that external giant planet perturbers are often effective in gen-

erating mild (∼ 0.2) eccentricities in WJs at low mutual inclination, but in or-

der to produce moderate (∼ 0.5) eccentricities in WJs requires a relatively high

inclination. Furthermore, even with a high inclination, generating a moderate

eccentricity in the WJ orbit may be difficult, because of the small fraction of time

the WJ spends at or above such an eccentricity.
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Figure 4.5: Maximum eccentricity emax, in terms of (I0, aout) parameter space,
for various outer planet masses and eccentricities, as labeled. Each point rep-
resents a system that survives tidal disruption of the WJ (which occurs when
emax is too large). The maximum eccentricity is obtained by integrating the oc-
tupole equations of motion for a number of octupole timescales, and recording
the maximum value of e achieved. The blue curves depict the quadrupole “LK
window” for eccentricity excitation (see Eqs.[6.19] - [4.24]). The quadrupole pre-
diction for the LK window is reasonably accurate for eout,0 = 0.25, 0.5, but fails
for eout,0 = 0.75.
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Figure 4.6: (a): Same numerical experiments as depicted in Fig. 4.5, but showing
the fraction of the total integration time that the WJ spends with e above 0.2.
Note that f(e > 0.2) is relatively high, often & 0.5. (b): Same as (a), but showing
the fraction of time spent above e = 0.5. Note that f(e > 0.5) is typically less
than ∼ 0.2.
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4.3 Observed WJ Systems with Exterior Companions

4.3.1 Sample Description and Method

The results of Section 4.2 demonstrate the types of perturber necessary in gen-

erating eccentricity in a WJ with canonical properties (m1 = 1MJ, ain = 0.3

AU). We now consider the observed radial velocity sample of WJs with giant

planet companions, and evaluate the prospects for the exterior planet to raise

the eccentricity of the WJ to the observed value eobs. This sample consists of

21 systems, and is given in Antonini et al. 2016 (see their Table 1). These sys-

tems have measured minimum masses, semi-major axes, and eccentricities for

both the inner and outer planets, but lack information on the mutual inclination

between m1 and m2.

Several of the two-planet systems in the Antonini et al. (2016) sample are

sufficiently non-hierarchical (with aout/ain < 10) such that the (purely secular)

results described in this paper may not apply. We immediately exclude systems

satisfying aout/ain < 3, as non-secular effects will likely dominate. This reduces

the sample from 21 to 15 systems. We conduct an additional (albeit less exten-

sive) set of N-body integrations for the remaining systems, and look for changes

in semi-major axis of either orbit (indicative of non-secular effects). We use the

N-body code REBOUND (Rein & Liu, 2012), and include the apsidal precession

from GR and tidal distortion of m1 using the REBOUNDX library6.

In all numerical experiments we set a and aout equal to the observed values,

uniformly sample the argument of pericenter and orbital node of each planet

6https://github.com/dtamayo/reboundx
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in the range [0, 2π], and sample the initial inclination between m1 and m2 in the

range I0 = [0, π]. We explore various possibilities for the planet masses m1 and

m2 and initial values of e and eout, as described below. The integration times

are the same as described in Section 4.2.4, and we record the maximum value

of e, as well as the fraction of time the system spent with e ≥ eobs [denoted as

f(e ≥ eobs)].

4.3.2 Fiducial Experiment

First we conduct a fiducial set of experiments assuming that the inner planet

orbit is initially circular, while the outer planet has the initial eout,0 given by the

observed value, and the observed minimum masses for m1 and m2 are equal to

the true masses. Figure 4.7 depicts results for a grid of inclinations. We split

the results into three possible outcomes: emax ≤ eobs, emax ≥ eobs, and tidal

disruption. The color scale indicates the fraction of the total integration time

spent with eccentricity exceeding the observed value [f(e ≥ eobs)]. In all but two

systems (HD159243 and HD207832), high mutual inclinations (I0 & 40◦ − 50◦)

are needed to produce the observed eccentricity.

Although Fig. 4.7 presents a qualitative picture of the necessary initial in-

clinations, it is incomplete because each inclination corresponds to a particu-

lar set of initial orbital phases. Thus, we present a large set (1000 trials) of

numerical integrations, sampling the full range of precession phases (ωin, Ωin,

ωout) and mutual inclinations. For each observed system, the trials that led to

emax ≥ eobs (without resulting in tidally disruption) are plotted in Fig. 4.8, show-

ing f(e ≥ eobs) versus I0. In nearly all cases with eobs & 0.2, a mutual inclination
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Figure 4.7: Constraints on the required mutual orbital inclination of observed
WJs with external companions (see Antonini et al. 2016, Table 1 for the system
parameters). The results are obtained through numerical integrations, including
apsidal precession from GR and tides. If aout/ain < 10 we conduct N-body in-
tegrations, while if aout/in > 10 we conduct secular integrations. The outcome
of the integration is indicated by the symbol type. Small red crosses: tidally
disrupted (i.e. forbidden inclinations). Black dots: emax < eobs. Blue circles:
emax > eobs (i.e. the inclinations needed to generate the observed eccentricity).
The color scale indicates the fraction of time the system spent with eccentricity
e ≥ eobs. The large grey crosses depicted in the results for HD202206 and Kepler-
432 indicate N-body integrations where either ain or aout changed by more than
10 percent, indicative of non-secular effects. In most cases, mutual inclinations
I0 & 40◦ − 50◦ are needed to generate the observed WJ eccentricity. This is in
agreement with the results for the canonical WJ system considered in Section
4.2.5.
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greater than about 40◦ − 50◦ is required to generate the observed eccentricity.

The exterior companions simply do not have sufficient octupole strengths for

a coplanar configuration to drive eccentricity oscillations of sufficient ampli-

tude in the WJ, and instead require high inclinations so that LK oscillations are

induced. Two exceptions are HD159243 and HD207832. The observed eccen-

tricities of both of these WJs are readily explained with coplanar configurations

because of the relatively low values (eobs ' 0.02 and 0.1 respectively).

As discussed in Section 4.2.5, in order for secular eccentricity oscillations

from exterior companions to be a plausible explanation for eccentric WJs, we

also require that the system spend a sufficiently large fraction of time with e ≥

eobs. The quantity f(e ≥ eobs) has a complicated dependence on inclination and

system parameters, and must be examined on a case-by-case basis (see Fig. 4.8).

As expected, systems with higher eobs usually have lower values of f(e ≥ eobs).

The two systems with the highest eccentricities (HD37605 and HD163607) have

f(e ≥ eobs) . 0.2 for all inclinations.

We note that unlike in Fig. 4.7, all the results in Fig. 4.8 were obtained by inte-

grating the secular equations of motion, without accompanying N-body calcu-

lations for the less hierarchical systems. These results thus may not completely

capture the full physical behavior for some of the less hierarchical systems, es-

pecially Kepler-432 (the system that exhibits occasional non-secular behavior in

our N-body integrations shown in Fig. 4.7). However, note that Kepler-432 is a

WJ orbiting an evolved star (Ciceri et al., 2015; Ortiz et al., 2015; Quinn et al.,

2015), and the large stellar radius may lead to enhanced tidal interactions and

possibly dissipation in the star and orbital decay. The results for Kepler-432

should therefore be taken with caution, since the treatment in this paper does
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not include these additional physical ingredients.

4.3.3 Additional Numerical Experiments

Next we investigate how the results of the fiducial experiments (Section 4.3.2)

may change when several of the assumptions are modified. We repeat the ex-

periments depicted in Fig. 4.8, but vary the following:

• We allow the initial eccentricity of the WJ to be non-zero. A WJ that formed

either in-situ or underwent disk migration is expected to begin with low

eccentricity, but here we allow for an initial value e0 = 0.1. Such an eccen-

tricity may conceivably be induced by planet-disk interactions (e.g. Gol-

dreich & Sari, 2003; Tsang et al., 2014; Duffell & Chiang, 2015), or perhaps

from a scattering event with another body early in the system’s history.

We denote this set of experiments as Eccentric-in (with all other parame-

ters identical to the fiducial set).

• We consider the possibility that the outer planet initially had a higher ec-

centricity than the observed value. If both planets are observed at a ran-

dom point in a mutual eccentricity oscillation cycle, then the initial eccen-

tricity of the outer planet may have been higher. For a coplanar system,

the change in jout =
√

1− e2
out is related to the change in jin =

√
1− e2

in

via Eq. (4.16). Since some of the observed systems are not exceedingly

hierarchical, there may be a moderate change in eout over the eccentricity

oscillation cycle. To explore this possibility, we repeat the fiducial exper-

iments but increase the outer eccentricity by 0.1 relative to the observed

value. Thus, the initial outer eccentricity is eout,0 = eout,obs + 0.1 (keeping
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Table 4.1: Various sets of numerical experiments involving observed WJs with
outer planetary companions (see Sections 4.3.2, 4.3.3, and Fig. 4.9). The data
set is given in Antonini et al. 2016 (see their Table 1). For each observed sys-
tem, both planets have measured eccentricities, semi-major axes, and minimum
masses. For all experiments we set ain, aout to the observed values, and ran-
domly sample the argument of pericenter and node (ω,Ω) of both planets in the
range [0 − 2π], and the mutual inclination of the planets in I0 = [0, π]. For each
experiment we conducted 1000 numerical integrations, out which a small subset
(less than 20%) resulted in tidal disruption of the inner planet.
Name m1 m2 ein,0 eout,0

Fiducial (m1 sin i1)obs (m2 sin i1)obs 0.001 eout,obs

Eccentric-in (m1 sin i1)obs (m2 sin i1)obs 0.1 eout,obs

Eccentric-out (m1 sin i1)obs (m2 sin i1)obs 0.001 eout,obs + 0.1
Increase-mass-in 2(m1 sin i1)obs (m2 sin i1)obs 0.001 eout,obs

Increase-mass-out (m1 sin i1)obs 2(m2 sin i1)obs 0.001 eout,obs

the other parameters identical to the fiducial set). We denote this set of

experiments as Eccentric-out.

• We note that the observed masses are only lower limits. A higher value

for the outer planet mass may lead to a higher eccentricity for the inner

planet. To examine this possibility in a simple manner, we increase the

outer planet mass by a factor of two: thus m2 = 2(m2 sin i2)obs. We denote

this set of experiments as Increase-mass-out.

• We increase the observed inner planet mass by a factor of two: thus m1 =

2(m1 sin i1)obs. We denote this set of experiments as Increase-mass-in.

The parameters adopted for these experiments are summarized in Table

4.1. Note that all these experiments except Increase-mass-in provide a

more optimistic scenario in producing eccentric WJs compared to the fidu-

cial case.

For each experiment, we proceed exactly as in the fiducial experiment (Sec-
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tion 4.3.2), generating 1000 initial conditions with initial inclinations and pre-

cession phases randomly sampled over the full ranges. In the interest of space,

we omit figures analogous to Fig. 4.8, and instead show the minimum initial

inclination needed to generate emax ≥ eobs (denoted as I0,min) in Fig. 4.9.

In most cases, I0,min does not differ substantially from the fiducial case: in-

clinations greater than about 40◦ are usually needed to achieve emax ≥ eobs. Two

exceptions are HD169830 and Kepler-432: although the fiducial experiments

imply minimum inclinations of ∼ 30◦ and ∼ 50◦, these additional experiments

show that coplanar configurations may lead to the observed WJ eccentricity

(however, see the discussion at the end of Section 4.3.2 about Kepler-432.).

In summary, we find that in order for the eccentricities of the observed WJs

with external companions to have arisen from secular perturbations from the

outer planet, the two planets must have a mutual inclination of at least 40◦−50◦

in most cases. This result is robust across various numerical experiments involv-

ing different assumptions on the initial eccentricities and masses of both planets.

The exceptions are HD159243, HD207832, and (depending on the assumptions

for the initial eccentricities and masses) possibly HD169830 and Kepler-432 –

these systems can be explained with coplanar or low inclination configurations.

There is a difficulty in explaining the most eccentric WJs in the sample, because

the fraction of time spent at or above eobs is low (less than ∼ 0.2).
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Figure 4.8: Fiducial experiment (Section 4.3.2): Large set (∼ 1000 trials) of nu-
merical integrations of observed WJ systems with external companions, with
inclinations and orbital angles randomly sampled (see Table 4.1 for further in-
formation). For each set of initial conditions, we integrate the secular equations
of motion, and calculate the fraction of time that the WJ spends at an eccentricity
greater than the observed value [f(e > eobs)]. The dependence of f with initial
inclination varies from system-to-system, and is often complex. High mutual
inclinations are usually needed to generate the observed eccentricity, in agree-
ment with Fig. 4.7.
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Figure 4.9: All numerical experiments: Comparison of the various experiments
(see Table 4.1) involving observed WJs with external companions. Each exper-
iment adopts different assumptions on the starting eccentricities and masses
of both planets, to address the uncertainties in the initial conditions and sky-
projected orientations of the orbits. For each system and experiment, we plot the
minimum inclination I0,min that led to emax > eobs, determined from integrating
1000 systems (with initial precession angles and mutual inclinations sampled
randomly). For most systems, I0,min is not strongly affected by the experiment
assumptions. See the text for further discussion.

4.4 Suppression of Eccentricity Oscillations by Close Rocky

Neighbors

Here we consider WJs with close, rocky “neighbors,” in addition to a distant ex-

ternal giant planet. Huang et al. (2016) recently found that ∼ 50% of WJs have

nearby low-mass neighbors; such neighbors may lead to orbital precession of

the WJ that is faster than that due to the distant giant planet, thereby suppress-

ing eccentricity growth.
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We denote the neighboring planet mass as m′, and the WJ and external giant

planet companion haves masses m1 and m2, as before 7. The planet m′ has semi-

major axis a′, and may orbit interior or exterior to m1, but is always interior to

m2. For simplicity, we assume that m′ is circular and coplanar with m1. This

yields a rouch estimate on the ability of m′ to suppress eccentricity oscillations

in m1. Identifying the precise influence of m′ on the eccentricity of m1 requires

N-body integrations of three-planet systems and is beyond the scope of this

paper.

In order for m2 to raise the eccentricity of m1, the orbital precession of m1

due to m′ (denoted here as ω̇) must be smaller than the orbital precession of m1

due to m2 (of order t−1
k ). We thus require

ε ≡ ω̇

t−1
k

. 1, (4.27)

with ε given by

ε =


m′

m2

a3
out,eff

a′2a
b

(1)
3/2(a/a′), if a′ > a

m′

m2

a′a3
out,eff

a4 b
(1)
3/2(a′/a), if a′ < a,

(4.28)

where b(1)
3/2(α) is a Laplace coefficient. As a result, for specified properties of a WJ

and giant planet perturber, there is a maximum value ofm′ allowing eccentricity

oscillations of m1 (m′crit, obtained from setting ε = 1).

Figure 4.10a considers a canonical WJ (m1 = MJ, a = 0.3 AU) and fixed gi-

ant planet perturber (m2 = MJ, aout,eff = 3, 6 AU) and shows m′crit versus a′/a.

A super-earth neighbor (m′ ∼ 10M⊕) is extremely effective in suppressing ec-

centricity oscillations in the WJ, and an Earth-mass neighbor may also prohibit

eccentricity oscillations for close separations.

7We will refer to m′ as the “neighbor” and m2 as the “perturber.”
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Figure 4.10b depicts the sample of WJs with close neighbors from Huang

et al. (2016) (with the exception of KOI-191.01, since this WJ may actually be

solitary [Law et al. 2014]). For the neighboring planets in each system, we cal-

culate the value of ε, assuming a hypothetical giant perturber m2 = 1MJ and

aout,eff = 5a, with a the observed WJ semi-major axis. Since this sample con-

sists entirely of Kepler objects, many planets lack mass constraints. WJs without

mass estimates have been assignedm1 = MJ, and the close neighbors have been

assigned m′/M⊕ = 2.69(R′/R⊕)0.93 (Weiss & Marcy, 2014). Given these assump-

tions on planetary masses, the results in Fig. 4.10b should be interpreted with

large uncertainties. Nonetheless, we see that nearly all systems have at least one

neighboring planet satisfying ε & 1, so that eccentricity growth due to the exer-

nal giant perturber is most likely prohibited, or at the very least, reduced. Given

the strong giant planet perturber considered, the values of ε in 4.10b represent

an optimistic scenario: weaker perturbers will lead to even larger values of ε.

We conclude that close (within∼ [0.1−10]a), low mass (1−10M⊕) neighbors

to WJs are frequently capable of suppressing eccentricity oscillations in WJs. If

eccentric WJs arise primarily due to secular perturbations from distant giant

planet perturbers, they should generally lack nearby companions.

4.5 Summary & Discussion

Many warm Jupiters (WJs) are observed to have exterior giant planet compan-

ions. This paper considers the scenario where WJs form initially with low eccen-

tricities, having reached their observed orbits either through in-situ formation,

or disk migration. In order to produce the modest eccentricities observed in

159



10-1 100 101

a ′/a

10-1

100

101

102

m
′ cr

it
 (

M
⊕
)

(a)
aout, eff = 3 AU

aout, eff = 6 AU

KOI-6
163

Kep-89

Kep-46

Kep-302

Kep-289

Kep-418

Kep-30

Kep-148

Kep-117

10-3

10-2

10-1

100

101

102

103

ε

(b)

Figure 4.10: (a): Maximum mass of m′ that allows eccentricity oscillations of
m1 (due to m2), as a function of a′/a. m′crit is determined by setting ε = 1; see
Eq. (4.28). The WJ has m1 = MJ, a = 0.3 AU, and the perturber has m2 = MJ,
aout,eff = 3, 6 AU, as labeled. (b): ε for the sample of WJs with close compan-
ions, from Huang et al. (2016). We have set the mass and separation of a giant
planet perturber to m2 = MJ and aout,eff = 5a, where a is the measured WJ semi-
major axis. Nearly all systems have at least one neighboring planet that satisfies
ε & 1, indicating that eccentricity-oscillations from an undetected giant planet
perturber are likely to be suppressed.

many WJs, we invoke the presence of an exterior giant planet companion that

raises the eccentricity of the WJ through secular perturbations. The eccentricity

of the WJ thus oscillates between e ' 0 and a maximum value e = emax. In order

for the companion to generate the observed WJ eccentricity eobs through eccen-

tricity oscillations, we require emax ≥ eobs. Furthermore, the fraction of time

spent at eccentricities equal to or greater than the observed value [denoted as

f(e ≥ eobs)] should be relatively high. For a WJ with specified properties, these

requirements place constraints on the properties of an external companion in

terms of its mass, semi-major axis, eccentricity, and inclination.

In Section 4.2, we examine the different mechanisms/regimes of eccentric-

ity excitation of a “canonical” WJ (with m1 = 1MJ, a = 0.3 AU) by an outer

planetary companion of various masses and orbital properties. Coplanar and
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inclined systems are discussed separately, because coplanar systems allow an

octupole-level analytic treatment, whereas octupole-level inclined systems re-

quire full numerical integrations. In additional to the secular interactions be-

tween the two planets, we also consider apsidal precession of the inner planet

due to general relativity and tidal distortion. For coplanar and moderately in-

clined systems (I0 . 30◦), the apsidal precession resonance, which occurs when

the net precession rates of the two planets (driven by mutual interaction and the

GR effect) become equal (see Eqs.[4.13]-[4.14]). This leads to efficient eccentricity

excitation (see Figs. 4.1 and 4.4). We also show that the extreme eccentricity ex-

citation and orbital flip discussed in previous work (Li et al., 2014) are unlikely

to operate for realistic systems (Section 2.3). For higher mutual inclinations, the

Lidov-Kozai eccentricity effect leads to eccentricity excitation.

The main results of Section 4.2 are summarized in Figs. 4.5 and 4.6. Figure

4.5 reveals that coplanar and low-inclination (I0 . 30◦) perturbers may lead to

substantial eccentricity increases, with emax ' 0.2− 0.6, where the range in emax

depends on the perturber mass, separation, and eccentricity. Massive perturbers

with high eccentricities are especially effective in producing large emax over a

wide range of separations. However, despite these large values of emax, the

fraction of time the WJ spends in such eccentric states is often small (see Fig. 4.6).

We conclude that a coplanar or low inclination companion may easily lead to a

mildly eccentric WJ (with e ' 0.2), provided that the perturber is massive and

highly eccentric (with m2 & MJ and eout ' 0.75). On the other hand, such a

companion is unlikely to produce a moderately eccentric WJ (with e ' 0.5),

because the fraction of time the WJ spends at or above e = 0.5 is very low.

Higher mutual inclinations are generally much more effective in producing
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eccentric WJs, due to Lidov-Kozai cycles. Inspecting the high-inclination results

(with I0 & 40◦) in Figs. 4.5 and 4.6, we find that such inclinations may easily

produce a mildly eccentric WJ (with e ' 0.2), since f(e ≥ 0.2) & 0.5 in most

cases. Producing a moderately eccentric WJ (with e ' 0.5) is also possible, with

f(e ≥ 0.5) ' 0.3 for some inclinations.

In Section 4.3 we apply our method and analysis to observed WJs with exte-

rior giant planet companions. These systems have measured minimum masses,

semi-major axes, and eccentricities for both the WJ and outer planet, but lack

information on the mutual orbital inclination (see Table 1 in Antonini et al.,

2016, for measured system parameters). For each system we have identified

the necessary mutual inclinations to produce the observed WJ eccentricity (see

Figs. 4.7, 4.8, and 4.9), for several different assumptions of the initial eccentrici-

ties and planetary masses of both planets. The majority of systems require mu-

tual inclinations of at least 40◦−50◦, in agreement with the results of Section 4.2.

Exceptions are HD159243, HD207832, and depending on the particular assump-

tions (see Section 4.3.3), possibly HD169830 and Kepler-432. The eccentricities

of these four WJs may result from coplanar or low inclination configurations

under some circumstances (but note the caveat concerning Kepler-432; see the

discussion at the end of Section 4.3.2).

Explaining the three most eccentric WJs in the sample (HD74156, HD37605,

and HD163607, with eobs & 0.6) is more difficult, because we find the fraction of

time spent above the observed value is usually less than 20%. If the eccentric-

ities of these planets are the result of secular eccentricity oscillations from the

observed companion, then we are observing them at rather special moments

during their oscillation cycles. On the other hand, such high eccentricities in
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WJs are also less common, which may help alleviate this issue.

Since ∼ 50% of WJs are estimated to have close rocky “neighbors” (Huang

et al., 2016), we have also briefly explored the effects of a third, low-mass planet

orbiting close to the WJ (see Section 4.4). The precession induced on the orbit

of a WJ by such a neighbor may often overcome the precession induced by a

more distant giant planet companion, thereby suppresssing eccentricity oscilla-

tions. By comparing the precession rates induced by a low mass neighbor and

a distant giant planet perturber, we find that ∼ (1 − 10)M⊕ neighbors may fre-

quently suppress eccentricity oscillations in a canonical WJ (see Fig. 4.10a). We

also consider the observed close neighbors to WJs from Huang et al. (2016), and

calculate the precession induced in the WJ by the neighbor(s), compared to that

due to an undetected giant planet perturber. We show that even for a strong

giant planet perturber, most systems contain at least one neighboring planet

likely to suppress eccentricity oscillations (see Fig. 4.10b). In the Huang et al.

(2016) sample, four WJs with close neighbors currently have constraints on the

WJ eccentricity8, three of which (Kepler-46, Kepler-117, and Kepler-289) have

low eccentricities, in the range eobs ' 0.003− 0.03, while the fourth (Kepler-418)

has eobs ' 0.2. The fact that WJs with close neighbors tend to have low or mod-

est eccentricities is consistent with our finding that such neighbors probably do

not allow the eccentricity of the WJ to grow from secular perturbations from a

more distant giant planet. On the other hand, such lack of eccentric WJs with

close neighbors may also simply result from dynamical stability requirements.

We conclude that the explanation for eccentric WJs proposed in this pa-

per requires that eccentric WJs should generally lack close neighbors of masses

8Eccentricities were obtained from exoplanets.org and exoplanet.eu, accessed on July 17,
2017.
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∼ 10M⊕. The consequence of a lower mass (∼ 1M⊕) neighbor is less certain,

and should be explored in future work via N-body integrations of three planet

systems.

Our results suggest that many observed WJs could have highly inclined

(& 40◦) external giant planet companions. This is intriguing, because it requires

an initial scattering event to generate the mutual inclination, and therefore the

existence of at least three giant planets. A recent measurement of a high mu-

tual inclination for a WJ with an external companion, using transit-timing and

transit duration variations, implies that high inclinations may be relatively com-

mon (Masuda, 2017). As observations continue to probe mutual inclinations in

multiple planet systems (see McArthur et al. 2010 and Mills & Fabrycky (2017)

for two examples of mutually inclined systems), a clearer picture of the role of

external companions on the eccentricities of inner planets will emerge.
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CHAPTER 5

IN-SITU SCATTERING OF WARM JUPITERS

5.1 Introduction

Warm Jupiters (WJs, giant planets with orbital periods in the range ∼ 10 − 300

days) have been the focus of many studies, especially regarding their dynamical

histories. Similar to hot Jupiters (HJs, with orbital periods less than ∼ 10 days),

whether WJs previously underwent migration from farther out, are currently

in the process of migration, or formed in-situ, is uncertain. Planet migration

comes two distinct flavors. One possibility is disk migration, in which plan-

ets are transported inwards due to torques from the protoplanetary disk (e.g.

Lin et al., 1996; Tanaka et al., 2002; Kley, & Nelson, 2012; Baruteau et al., 2014).

The second possibility is high-eccentricity migration, in which the planet’s ec-

centricity is excited to an extreme value by a stellar or planetary companion(s),

so that tides raised on the planet at pericenter distances shrink and eventually

circularize the orbit. High-eccentricity migration itself comes in several distinct

flavors, depending on the details of the eccentricity excitation, including excita-

tion from an inclined companion due to Lidov-Kozai cycles (Lidov, 1962; Kozai,

1962) or other secular perturbations (Wu & Murray, 2003; Fabrycky & Tremaine,

2007; Naoz et al., 2012; Petrovich, 2015a,b; Anderson et al., 2016; Muñoz et al.,

2016; Hamers et al., 2017; Vick et al., 2019) , scatterings (possibly combined with

secular interactions) (Rasio & Ford, 1996; Nagasawa et al., 2008; Nagasawa, &

This chapter is adapted from Anderson et al. (2019), to be submitted.
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Ida, 2011; Beaugé & Nesvorný, 2012), and secular chaos (Lithwick, & Wu, 2011,

2014; Teyssandier et al., 2019). See also Dawson, & Johnson (2018) for a review.

WJs are observed to have a wide range of eccentricities. A large fraction

have relatively low eccentricities (note the median eccentricity is ∼ 0.17), but

a substantial number have moderate to high eccentricities. Theories of planet

formation/migration must be able to account for these observations, and many

different mechanisms have been proposed in exciting WJ eccentricities.

One seemingly natural explanation for eccentric WJ is high-eccentricity mi-

gration. In this situation, WJs are caught in the act of inward migration, eventu-

ally to become HJs in circular orbits. In any high-eccentricity migration theory,

a small pericenter distance is required, so that tidal dissipation may shrink the

orbit within the lifetime of the host star. However, the majority of WJs have peri-

center distances too large to allow for migration. As a result, the most promising

flavor of high-eccentricity migration in producing WJs is secular perturbations

from a perturber, so that WJs are currently undergoing eccentricity oscillations,

and observed in a low-eccentricity phase (Dong et al., 2014; Dawson & Chi-

ang, 2014; Petrovich & Tremaine, 2016). This scenario requires a relatively close

or massive perturber, so that the secular perturbations that lead to eccentricity

growth are not suppressed by general relativistic apsidal precession. Such a

strong perturber is also required in order to produce any appreciable fraction of

WJs in population synthesis studies. If the perturber is too weak to induce ec-

centricity oscillations at sub-AU distances, migration proceeds far too quickly,

delivering the planet into HJ territory with little evidence of the time spent at WJ

distances. As a result, although HJs may be formed for a relatively wide range

of perturber properties (in terms of mass, semi-major axis, and eccentricity),
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WJs require somewhat specific initial conditions. Observationally, the number

of WJs exceeds the number of HJs. Population syntheses that choose a broad

range of properties for the perturber do not produce any appreciable numbers

of WJs (Petrovich, 2015b; Anderson et al., 2016; Hamers et al., 2017). Petrovich

& Tremaine (2016) conducted the most successful study thus far in replicating

the observed relative numbers of HJs and WJs by choosing as their initial con-

ditions a population of WJs initially at 1 AU with strong perturbers in a narrow

range of semi-major axis, at 5 − 6 AU. However, even these initial conditions

still produce too few WJs compared to HJs by a factor of about 5. At this point,

it remains unclear whether fine-tuning of the initial conditions is required to

produce any substantial number of WJs via secular high-eccentricity migration.

Other difficulties of high-eccentricity migration in the context of WJ forma-

tion include the fact that unlike HJs, a large fraction of WJs are thought to have a

close, low-mass neighbor (Huang et al., 2016). Such a configuration is difficult to

envision in a violent high-eccentricity migration history. Furthermore, Antonini

et al. (2016) examined the subset of observed WJs with characterized (in terms of

mass, semi-major axis and eccentricity) external giant planet companions, and

find most systems are inconsistent with a traditional secular high-eccentricity

migration origin, where the WJ was originally located beyond 1 AU, due to the

initial configurations being highly unstable.

These difficulties of high-eccentricity migration in reproducing properties of

WJs indicate that in-situ formation or disk migration may be responsible for

forming many, if not most WJs. However, both in-situ formation and disk mi-

gration generally predict low eccentricities, inconsistent with the mild to mod-

erately eccentric component of the observed WJ population. As a result, mech-
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anisms for generating eccentricity excitation are necessary. Some mechanisms

utilize the presence of a protoplanetary disk. Planet-disk interactions are ca-

pable of exciting eccentricities (e.g. Goldreich & Sari, 2003; Tsang et al., 2014),

but may be limited to modest eccentricities (Duffell & Chiang, 2015). Recently

Petrovich et al. (2019) studied a mechanism for transferring eccentricity (more

precisely, angular momentum deficit) from an outer planet to a WJ during dis-

persal of the protoplanetary disk.

Anderson et al. (2017) considered the possibility that eccentric WJs arise due

to in-situ formation or disk migration (in an initially low-eccentricity orbit), fol-

lowed by secular perturbations due to a distant companion, without requiring

that the planet be undergoing high-eccentricity migration. Eccentricity may be

excited due to a highly inclined perturber via Lidov-Kozai cycles, or by an ec-

centric coplanar perturber due to an apsidal precession resonance. Taking the

sample of WJs with external planetary companions with characterized orbits,

and assuming that the WJ formed in a circular orbit with subsequent secular

eccentricity excitation from the companion, they found high mutual inclina-

tions are needed (∼ 50◦ − 60◦) to generate the observed eccentricity, so that

Lidov-Kozai cycles are induced. The finding that high mutual inclinations are

needed is intriguing, and consistent with previous evidence for high inclina-

tions in many of the same systems found by Dawson & Chiang (2014). How-

ever, generating such inclinations is non-trivial, and clearly requires an early

scattering event in the system’s history.

Planet-planet scattering itself remains another possibility in producing ec-

centric WJs. Most studies of giant planet scattering have focused largely on

“cold Jupiters,” giant planets located at several AU. A substantial literature
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of planet scattering work exists, ranging from scattering of two planets to ten

or more planets (e.g. Chambers et al., 1996; Lin, & Ida, 1997; Ford et al., 2001;

Adams, & Laughlin, 2003; Chatterjee et al., 2008; Ford & Rasio, 2008; Jurić &

Tremaine, 2008; Nagasawa, & Ida, 2011).

Previous scattering studies of “cold Jupiters,” giant planets located at several

AU have been largely successful in reproducing the eccentricities of exoplanets.

However, the scattering hypothesis suffers from some uncertainties at sub-AU

distances from the host star, and the parameter space for scattering close to the

host star is much less explored. Scattering outcomes depend on the “Safronov

number”, roughly the ratio of the escape velocity from the planetary surface

to the planet’s orbital velocity. When the Safronov number is much less than

unity, close encounters between planets result in collisions, with the collision

product having a low eccentricity. In contrast, when the Safronov number is

much greater than unity, ejections are expected, efficiently raising the eccentric-

ities of remaining planets. WJs have Safronov numbers of order unity and thus

lie in a regime in which a combination of collisions and ejections may occur.

Petrovich et al. (2014) undertook a scattering study of primarily HJs, within 0.15

AU and with close initial spacing, and found inefficient eccentricity excitation

due to a preponderance of collisions. Whether this finding holds for WJs with a

wider range of initial spacing has yet to be thoroughly explored.

This paper presents a systematic study of planet-planet scattering for sys-

tems of closely-spaced WJs starting with initially low eccentricities. This setup

is consistent with either in-situ formation or arrival at a sub-AU orbit by disk

migration. The goal of this paper is two-fold. (1) On observationally-motivated

grounds, we aim to identify to what extent planet scattering may be contribut-
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ing to eccentric WJs. (2) On the theoretical side, we aim to catalogue the out-

comes of planet-planet scattering for planets in the range 0.1 − 1 AU, where a

rich variety of collisions and ejections are expected2. We conduct N-body scat-

tering experiments of (usually) three giant planets, with general relativistic ap-

sidal precession included. We explore a variety of choices for planet masses

and initial spacing, catalogue the scattering outcomes (branching ratios), and

analyze the properties of the systems remaining after scattering. Radial veloc-

ity observations have yielded samples of solitary WJs and WJs with an external

giant planet companion, with eccentricity measurements for both samples. We

compare the results of the scattering experiments with observed system proper-

ties to evaluate the extent to which in-situ scattering may be contributing to the

eccentric WJ population. We also briefly discuss how the results are affected by

adding a fourth planet to the initial setup.

This paper is organized as follows. In Section 5.2, we describe the setup of

our N-body scattering experiments, present scattering branching ratios, demon-

strate how the scattering results depend on various parameters, and discuss the

properties of the surviving planetary systems. In Section 5.3 we compare the

results of Section 5.2 with observations. We conclude in Section 5.4.
2We note that a recent scattering study by Marzari, & Nagasawa (2019) explored a similar

parameter regime
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5.2 Scattering Experiments

5.2.1 Setup & Canonical Parameters

We begin with a system of three planets, with massesm1, m2, m3, orbiting a host

star with mass M? = 1M� and radius R? = 1R�. For each planet, we sample

the initial eccentricities uniformly in the range [0.01, 0.05], inclinations (relative

to an arbitrary reference frame) uniformly in [0, 2◦], and argument of pericenter,

longitude of ascending node, and mean anomaly uniformly in [0, 2π]. The initial

semi-major axes are specified in units of mutual hill radiusK, so that ai−ai−1 =

KRH,mut, with a1 specified and i = 2, 3. We adopt a fiducial spacing of K = 4.

The innermost semi-major axis is sampled uniformly in a1 = [0.1 − 1]AU, and

the planet masses are chosen to be 0.5, 1, 2MJ, with randomly assigned ordering.

We draw a sample of over 3000 systems with these parameters and evolve using

N-body integrations. This set of simulations constitutes our fiducial sample,

which we will refer to as fiducial (see also Table 5.1). Section 5.2.3 explores

how the results depend on K, a1, and planet masses, and Section 5.2.4 considers

scattering of four planets.

The N-body calculations are conducted using REBOUND (Rein & Liu, 2012).

We include the effects of apsidal precession due to GR using the gr-potential

option in REBOUNDX3. When the separation of any two bodies becomes less

than the sum of their radii, we assume the bodies merge, conserving mass and

momentum, as in the built-in REBOUND collision routine. Since we consider

young giant planets, we set the radius of each planet to Rp = 1.6RJ. See also

Appendix C. Planets are considered ejected if the distance from the host star

3https://github.com/dtamayo/reboundx
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exceeds 1000 AU, and are subsequently removed from the simulation.

We integrate this system of three unstable planets using the IAS15 integrator

in REBOUND(Rein, & Spiegel, 2015) for a timespan of 106P1 , with P1 the initial

orbital period of the innermost planet. We refer to this initial, highly unsta-

ble phase (with close encounters eventually resulting in collisions or ejections)

as “Phase 1” of the integration. After this initial scattering has elapsed nearly

100% of the three-planet systems have become destabilized due to both colli-

sions and ejections. We continue to integrate the remaining two-planet systems

for a timespan of 108Pin (or until another collision or ejection has occurred),

where Pin is the orbital period of the inner planet at the end of “Phase 1”. We

refer to this longer-term integration as “Phase 2,” and use the hybrid integrator

Mercurius. Mercurius utilizes a symplectic Wisdom-Holman integrator WH-

FAST for large separations between planets (Rein, & Tamayo, 2015), switching

to IAS15 when the separation between any two bodies becomes less than a crit-

ical value. We choose this critical value to be 5 Hill radii. The timestep for the

Wisdom-Holman integrator is chosen to be 0.02Pin. Repeating a subset of the

fiducial sample with a timestep 0.01Pin yielded statistically identical results.

5.2.2 Scattering Outcomes

Figure 5.1 shows the fractions of one, two, and three-planet systems as a func-

tion of time. The leftmost panel shows “Phase 1” of the integration using IAS15.

Since the initial systems are highly unstable, the fraction of three-planet systems

quickly decays, eventually reaching a negligible value after 106 initial orbital pe-

riods of the innermost planet. During the long-term follow-up integration of the
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Figure 5.1: Fraction of one, two, and three-planet systems as a function of time
for the fiducial set of simulations. Left: “Phase 1” of the integration, in which
the initial (highly unstable) three-planet system was integrated using the IAS15
integrator in REBOUND. After 106 initial orbital periods of the innermost planet
have elapsed, nearly all of the three-planet systems have become destabilized,
due to a combination of planet collisions and ejections. Right: “Phase 2” of
the integration, in which we integrate the two-planet systems using the hybrid
Mercurius integrator, for a timespan of 108 orbital periods of the inner planet of
the two-planet systems. At the end of the integration, the fractions of one and
two-planet systems approach a constant value.

two-planet systems (“Phase 2”, right panel of Fig. 5.1), the fraction of two-planet

systems declines, eventually approaching a constant value after 108 orbits. The

vast majority of the two-planet systems are undergoing secular interactions at

this point, with constant semi-major axes and oscillating eccentricities and in-

clinations. We thus conclude that the majority of the remaining 2-planet sys-

tems are stable at this time. Further instabilities may occur over much longer

timescales, but such integrations are extremely costly to perform. We have ran-

domly selected a subset of 30 closely-spaced systems (with aout/ain < 3), and

integrated for an additional 109 orbits of the inner planet. Of these 30 systems,

3 became unstable.
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A close encounter can result in a planet loss due to a planet-planet collision,

planet-star collision, or planet ejection. Considering the first planet loss only (so

that the total number of planets is reduced from three to two), the number of

events for each particular outcome is denoted by Npp (planet-planet collision),

Nps (planet-star collision), and Nej (planet ejection), with total number of events

Ntot = Npp+Nps+Nej. The fractions of total systems resulting in a given outcome

are thus

fpp ≡
Npp

Ntot

, fps ≡
Nps

Ntot

, fej ≡
Nej

Ntot

. (5.1)

Table 5.1 presents these fractions. For the fiducial sample, we see that the

most common outcome is a planet-planet collision, with fpp ≈ 65%. The second

most common outcome is a planet ejection, with fej ≈ 29%. Planet-star colli-

sions are least common, with fps ≈ 6%. Recall that here we only consider the

first planet loss, occurring due to dynamical instability of the initial three-planet

system. Some systems later lose a second planet, which we discuss separately

below.

Next we separately analyze the scattering history of the one and two-planet

systems that remain at the end of “Phase 2” of the integration. Considering first

the two-planet systems, with number N2p, we define Npp,2p (Nps,2p, Nej,2p) as the

number of two-planet systems that suffered a planet-planet collision (planet-

star collision, planet ejection). Thus, the fractions of two planet systems that

were formed by a particular outcome are

fpp,2p =
Npp,2p

N2p

fps,2p =
Nps,2p

N2p

fej,2p =
Nej,2p

N2p

. (5.2)

Inspecting Table 5.2, 100% of the two-planet systems were formed by planet-

planet collisions.

The one-planet systems suffered two planet losses. Define the total number
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of one-planet systems as N1p. The number of one-planet systems where the first

planet loss was a planet-planet collision (planet-star collision, planet ejection) is

N
(1)
pp,1p (N (1)

ps,1p, N (1)
ej,1p), where the superscript “(1)” indicates the first planet loss.

Using similar notation as for the two-planet systems, we define the fractions

f
(1)
pp,1p ≡

N
(1)
pp,1p

N1p

, f
(1)
ps,1p ≡

N
(1)
ps,1p

N1p

, f
(1)
ej,1p ≡

N
(1)
ej,1p

N1p

. (5.3)

Considering the second planet loss (so that the total number of planets is re-

duced from two to one) we use similar notation, f (2)
pp,1p, f (2)

ps,1p, and f
(2)
ej,1p, where

the superscript “(2)” indicates the second planet loss. Table 5.3 shows that one-

planet systems are formed through a combination of ejections and collisions.

The first planet loss occurs due to an ejection ∼ 56% of the time, and planet-

planet and planet-star collisions 33% and 11% respectively. The second planet

loss occurs almost entirely due to ejections, with f (2)
ej,1p ∼ 92%.

In summary, scattering of a closely-spaced (K = 4) system of giant planets

results in comparable numbers of one and two-planet systems. Two-planet sys-

tems are produced entirely due to planet-planet collisions, whereas one-planet

systems form through a combination of ejections and collisions.

5.2.3 Properties of One and Two-Planet Systems and Parameter

Exploration

Now we analyze the orbital characteristics of the one and two-planet systems,

at the end of Phase 2 of the integration. In most figures we also show proper-

ties of observed WJ systems; however, we delay comparison with the observed

systems until Section 5.3.
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Table 5.1: Initial conditions, scattering outcomes, and final eccentricities for the
different sets of simulations. We include here all surviving systems (see Tables
5.2 and 5.3 for the results separated into two and one-planet systems). The in-
formation is obtained at the end of “Phase 2” of the integration (see Fig. 5.1).
In all sets of simulations, the initial innermost planet semi-major axis is sam-
pled uniformly in a1 = [0.1 − 1] AU. The remaining two planets are then
spaced in units of their mutual Hill radius K, as indicated. The simulation set
lognorm-mass has all masses sampled from a log-normal distribution, with a
mean of log(mp/MJ) = 0, width 0.5, and upper and lower limits of mp = 4MJ

and mp = 0.25MJ. The arguments of pericenter, longitude of ascending node
and mean anomalies are sampled in [0 − 2π] for all simulations. The initial
inclinations are sampled uniformly in the range [0.1◦ − 2◦]. For fiducial,
near-eq-mass, lognorm-mass, and fiducial-K-3, the initial eccentrici-
ties are sampled in the range [0.01− 0.05]. For fiducial-K-5, we increase the
initial eccentricities so that instabilities occur within a practical amount of time,
choosing the innermost eccentricity e1 = 0.08 and the remaining two planets so
that a3(1 − e3) − a2(1 + ei2) = 3RH,mut, with RH,mut the mutual Hill radius. This
leads to eccentricities at most ∼ 0.11 for the outer two planets. The columns in
the table are (from left to right), the simulation name, number of simulations
(Nrun), choice of planet masses, initial spacing in units of mutual Hill radii (K),
fraction of one-planet systems produced (f1p), fraction of two-planet systems
produced (f2p). The columns labeled fpp, fps, and fej indicate the fraction of
systems where the first planet loss (for one-planet systems), or only planet loss
(for the two-planet systems) resulted from a planet-planet collision, planet-star
collision, or planet ejection respectively. See also equation (5.1). The branching
ratios for the second planet loss (resulting in one-planet systems) are included
in Table 5.3. The average eccentricity is denoted as eave, and the 10th, 50th, and
90th percentile eccentricities as e10, e50, e90. Note that for the two-planet systems
in these samples, the eccentricities shown are for the inner planet only.
Name Nrun Initial Masses (MJ) K f1p f2p fpp fps fej eave e50 e10 e90

fiducial 3313 0.5, 1.0, 2.0 4 0.52 0.48 0.65 0.06 0.29 0.23 0.19 0.05 0.48
near-eq-mass 973 0.9, 1.0, 1.1 4 0.34 0.66 0.78 0.10 0.12 0.28 0.23 0.05 0.59
lognorm-mass 965 See caption 4 0.50 0.49 0.69 0.00 0.31 0.22 0.17 0.05 0.47
fiducial-K-3 986 0.5, 1.0, 2.0 3 0.60 0.41 0.76 0.00 0.24 0.23 0.17 0.04 0.48
fiducial-K-5 949 0.5, 1.0, 2.0 5 0.50 0.48 0.63 0.00 0.37 0.23 0.18 0.05 0.48
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Table 5.2: Scattering outcomes and properties of the two-planet systems at the
end of “Phase 2” of the integration. The quantities fpp,2p, fps,2p, fej,2p are the frac-
tions of two-planet systems produced by planet-planet collisions, planet-star
collisions, and planet ejections respectively (see equation 5.2). The remaining
columns show the inner and outer planet eccentricities (ein, eout), the mutual in-
clination Imut, and the semi-major axis ratio α ≡ aout/ain. The superscript “ave”
denotes the unweighted average, and the superscripts 50, 90 indicate the 50th
(median), and 90th percentiles.
Name fpp,2p fps,2p fej,2p eave

in e50
in e90

in eave
out e50

out e90
out Iave

mut (◦) I50
mut (◦) I90

mut (◦) αave α50 α90

fiducial 1.00 0.00 0.00 0.15 0.11 0.34 0.12 0.09 0.27 5.25 2.46 13.26 2.46 2.06 3.02
near-eq-mass 1.00 0.00 0.00 0.18 0.14 0.38 0.15 0.12 0.30 7.16 3.01 18.39 2.62 2.04 3.69
lognorm-mass 1.00 0.00 0.00 0.14 0.10 0.31 0.12 0.08 0.25 5.20 2.28 14.73 2.30 2.01 2.74
fiducial-K-3 1.00 0.00 0.00 0.13 0.08 0.32 0.09 0.06 0.22 4.99 2.34 12.56 1.93 1.64 2.5
fiducial-K-5 1.00 0.00 0.00 0.15 0.12 0.31 0.15 0.11 0.33 5.14 2.16 12.02 2.63 2.37 3.42

Table 5.3: Scattering outcomes and properties of the one-planet systems at the
end of “Phase 2” of the integration. The columns labelled f

(1)
pp,1p, f (1)

ps,1p and f
(1)
ej,1p

indicate the fractions of systems with the first planet loss resulting in planet-
planet collisions, planet-star collisions, and planet ejections respectively (see
equation 5.3). The columns labelled f

(2)
pp,1p, f (2)

ps,1p and f
(2)
ej,1p have identical mean-

ings, but for the second planet loss. Planet-planet collisions are most common
for the first planet loss, with f (1)

pp,1p = 65% − 78%. Planet ejections dominate the
second planet loss, with f (2)

ej,1p = 91%− 92%.

Name f
(1)
pp,1p f

(1)
ps,1p f

(1)
ej,1p f

(2)
pp,1p f

(2)
ps,1p f

(2)
ej,1p eave e50 e10 e90

fiducial 0.33 0.11 0.56 0.03 0.06 0.92 0.30 0.27 0.10 0.55
near-eq-mass 0.37 0.30 0.33 0.02 0.06 0.92 0.47 0.42 0.23 0.78
lognorm-mass 0.40 0.00 0.6 0.09 0.00 0.91 0.30 0.26 0.10 0.56
fiducial-K-3 0.59 0.00 0.41 0.11 0.00 0.89 0.29 0.26 0.10 0.55
fiducial-K-5 0.29 0.00 0.71 0.07 0.00 0.93 0.30 0.26 0.09 0.55

Table 5.4: Properties of both one and two-planet systems from 4-planets,
consisting of four unstable planets with masses 0.5, 1, 1.25, 2MJ, and all other
parameters sampled identically to fiducial. The first three columns indicate
the average, 50th and 90th percentile value eccentricities of the one-planet sys-
tems. The remaining columns indicate properties of two-planet systems, with
the same notation as in Table 5.2.
Name eave e50 e90 eave

in e50
in e90

in eave
out e50

out e90
out Iave

mut I50
mut I90

mut αave
out α50

out α90
out

4-planets 0.35 0.31 0.64 0.2 0.17 0.4 0.2 0.17 0.4 7.21 4.01 15.76 4.13 2.87 4.98
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Figure 5.2 shows the properties of the two-planet systems. The subscript

“in” indicates the inner planet and “out” indicates the outer planet. We com-

ment on the key features here, but see the caption and Table 5.2 for addi-

tional details. In Fig. 5.2a, we present the relative spacing, aout versus ain. The

two-planet systems are quite closely-spaced, with 90% of systems satisfying

aout/ain < 3. In Fig. 5.2c, we show semi-major axis versus eccentricity for the

inner planet (ain versus ein). Smaller values of ain lead to a wider range of eccen-

tricities. The eccentricity distribution in Fig. 5.2e is peaked at small values, and

has mean and 90th percentile values of eave
in = 0.15, e90

in = 0.34. The mutual incli-

nations of the two-planet systems have mean and 90th percentiles Iave
mut = 5.25◦

and I90
mut = 13.26◦. The typically low eccentricities is consistent with the fact that

the two-planet systems arose entirely due to planet-planet collisions.

Fig. 5.3 shows the properties of the one-planet systems. Most of these plan-

ets are WJs, but a small fraction have semi-major axes greater than 1 AU. In

all eccentricity histograms in this paper, we have selected only the one-planet

systems with a < 1 AU, in order to directly compare with observed WJ eccen-

tricities (see Section 5.3). Compared to the two-planet systems, the degree of

eccentricity excitation for the one-planet systems is higher, due to the fact that

each one-planet system suffered at least one ejection. The distribution of eccen-

tricities shown in Fig. 5.3b peaks near 0.25 with a long tail. The mean and 90th

percentile eccentricities of the single-planet systems are eave = 0.3 and e90 = 0.55

respectively.
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Figure 5.2: Two-planet systems (open blue circles), along with the observed WJ
systems with external giant planet companions (solid cyan circles). Panel a: ain

versus aout. Scattering tends to result in compact two-planet systems. Over 90%
of systems satisfy aout/ain ' 3, although more hierarchical systems are also pro-
duced. Panel b: ein versus eout. Scattering results in a wide range of eccentricities
for both planets, with a slight preference for a higher eccentricity of the inner
planet. Panel c ain versus ein. Also plotted is a contour of constant pericenter
distance rp = 0.05 AU; systems below this curve are not expected to undergo in-
ward migration due to tides raised on the planet. Panel d: aout versus eout. Panels
e-f: Histograms of eccentricities of the inner and outer planets ein, eout. Note
that the observational sample of WJs with characterized giant planet compan-
ions (cyan histograms) consists of only 24 systems at present. Panel g: Mutual
inclination between the inner and outer planet Imut. Scattering results in low
inclinations, with 90% of systems satisfying Imut . 13◦.
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Figure 5.3: One-planet systems (open red circles), along with observed “solitary
WJs” (without any identified giant planet companions), shown as cyan solid
circles. This observed sample consists of 83 systems at present. Left: Eccentric-
ity versus semi-major axis, along with a curve of constant pericenter rp = 0.05
AU for reference. Systems below this dashed curve are not expected to undergo
migration due to tides raised on the planet. Right: Histograms of WJ eccentric-
ities. The scattered eccentricity distribution peaks near e ' 0.2 with a wide tail
extending up to ∼ 0.9.

Dependence on initial spacing K

Next we discuss how the results depend on the initial spacing K. Previous

work has shown that when planet collisions are infrequent, K primarily affects

the time for instabilities (Chambers et al., 1996), rather than the degree of eccen-

tricity excitation itself. However, when collisions are common, small values of

K may lead to an artificially high number of collisions, resulting in low eccen-

tricities.

The canonical initial spacing for the set of simulations previously discussed,

titled fiducial is K = 4. To explore how the results depend on K, we per-

form additional sets of ∼ 1000 simulations with K = 3 and K = 5, titled

fiducial-K-3 and fiducial-K-5 respectively. Aside from the differences

in the choice of K, both of these additional samples have most of the same pa-
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rameters as fiducial. However, for fiducial-K-5 the timescale for insta-

bilities to develop is sufficiently long to be impractical, so we slightly increase

the initial eccentricities of the planets. We set the initial eccentricity of the inner

planet to e1 = 0.08 and assign the eccentricities of the outer two planets so that

a3(1− e3)− a2(1 + e2) = 3RH,mut. Depending on the masses, the initial eccentric-

ities of the outer planets are at most ∼ 0.11 Such eccentricities may conceivably

develop due to planet-disk interactions.

Inspection of Tables 5.1 - 5.3 reveals that the value of K does not drastically

affect the results. As expected, the fraction of planet-planet collisions is highest

for the smallest K, with fpp = 0.76 for K = 3, compared to fpp = 0.63 for K = 5.

The mean and 90th percentile eccentricities listed in Table 5.1 are identical to the

second decimal place. The final spacing of the two-planet systems (α ≡ aout/ain)

is mildly dependent on K, with average αave = 1.93, 2.46, 2.63 for K = 3, 4, 5,

and 90th percentile spacing α90 = 2.5, 3.02, 3.42.

Dependence on initial innermost semi-major axis

Next we discuss how the scattering results depend on the initial innermost

planet semi-major axis, a1. Recall that in all sets of simulations we fix the value

of a1 and assign a2 and a3 according to the value of K. Taking the fiducial set of

simulations, fid-mass (with K = 4) we split the set of simulations (∼ 3300 total)

into four bins of a1, each with width 0.225 AU and centers 0.21, 0.44, 0.66, and

0.89 AU.

Figure 5.4 shows how the results depend on a1. The top panel shows the

frequencies of collisions and ejections. In the first bin, centered at 0.21 AU,
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planet-planet collisions are very common, with fpp ' 82% and fej ' 15%. As a1

increases, the frequency of ejections increases, so that in the last bin, centered at

0.89, fpp ' 50%. The fraction of planet-star collisions remains nearly constant at

fps ' 6% across all bins.

The dependency of fpp and fej on a1 leads to a slight variation on the rel-

ative numbers of one and two-planet systems, as shown in the middle panel

of Fig. 5.4. In the first a1 bin, the fractions of one and two-planet systems are

f1p = 37% and f2p = 63% respectively. The slightly larger value of f2p at small

a1 is a direct consequence of the fact that collisions are most common close to

the host star, leading to collision products with lower eccentricities, and hence,

more stable two-planet systems. As a1 increases, f2p the number of ejections

increases, so that the fraction of one-planet systems increases. In the largest a1

bin, one-planet systems are somewhat favored, with f1p = 63% and f2p = 37%.

This dependency of collisions/ejections with a1 leads to a slight increase in the

average eccentricity with a1, as shown in the middle panel of Fig. 5.4.

Figure 5.5 illustrates how a1 determines the properties of two-planet sys-

tems. The initial value of a1 primarily determines the final semi-major axis (but

not the relative spacing), since scattering typically limits changes in semi-major

axis to factors of order unity. There is no significant dependence of a1 on the fi-

nal planet eccentricities, mutual inclination, or relative spacing. Examining the

binned one-planet systems, a similar lack of dependence of a1 on eccentricity is

found.
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Figure 5.4: Scattering outcomes, fractions of one and two-planet systems, and
average eccentricities for the fiducial set of calculations. Properties are taken
at the end of “Phase 2” of the integration, and binned in terms of the initial in-
ner planet semi-major axis a1 (of the original three-planet system). Top panel:
Fractions of systems resulting in planet-planet collisions (fpp), planet-star colli-
sions (fps), and planet ejections (fej) (see equation 5.1). Planet-planet collisions
dominate at small values of a1, as expected. As a1 increases, the frequency of
planet ejections increases. Planet-star collisions remain constant across a1. Mid-
dle panel: Fractions of one-planet (f1p) and two-planet (f2p) systems produced
via scattering. Due to the increasing frequency of ejections with a1, the fraction
of one-planet systems increases with a1. Bottom panel: Median and mean ec-
centricities of both one and two-planet systems. Eccentricities increase with a1,
due to the increasing fraction of one-planet systems, as a consequence of more
planet ejections.
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Figure 5.5: Dependence of two-planet system properties on the initial semi-
major axis of the innermost planet of the initial three-planet system. The two-
planet systems from the fiducial run have been separated into four bins of
width 0.225AU. Bin centers are indicated by markers, showing 10th, 50th, and
90th percentiles of various quantities, as labeled. Top left and right: Inner and
outer planet eccentricities. The initial value of a1 does not strongly affect the
distributions of ein and eout, with a median value ∼ 0.1 for ein across all bins,
and slightly lower for eout. Middle left: Inner planet semi-major axis ain of the
surviving two-planet systems following scattering. Scattering typically results
in ain within a factor of ∼ 2 of the original inner semi-major axis. Middle right:
aout/ain. In-situ scattering tends to produce closely-spaced two-planet systems
(aout/ain ' 2 − 3), with more hierarchical systems (aout/ain > 5) quite rare. Bot-
tom left: The spacing of the final two-planet systems in units of mutual Hill radii,
with a median value Kfinal ' 5 across all bins. Bottom right: Mutual inclinations
of the two-planet systems. Scattering typically results in low inclinations, with
a median of ∼ 2◦ across all bins.
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Dependence on Planet Masses

Finally, we explore how the eccentricity distributions and relative spacing of

two-planet systems depends on planet masses. When planet masses are un-

equal, scattering leads to fewer close encounters, due massive planets eas-

ily ejecting low-mass planets, whereas for equal-mass planets, ejection be-

comes more difficult and planets suffer a higher number of close encounters,

thereby leading to efficient eccentricity excitation (Ford & Rasio, 2008). Besides

fiducial (with masses 0.5, 1.2MJ), we conduct two additional sets of simu-

lations, with all parameters (except for masses) chosen/sampled identical to

fiducial. We consider nearly equal mass planets, with masses 0.9, 1, 1.1MJ,

and refer to this set of simulations as near-eq-mass. We also consider masses

sampled from a log-normal distribution, referred to as lognorm-mass, with

mean 1MJ, width log10(mp/MJ) = 0.5, and upper and lower limits 0.25MJ and

4MJ. These choices are somewhat arbitrary, but qualitatively mimic the ob-

served distribution of giant planet masses. In all sets of simulations, the or-

dering of the three masses is randomly assigned.

Figure 5.6 compares the eccentricity distributions of fiducial, fiducial-K-3,

and fiducial-K-5, showing both the combined distribution of one and two-

planet systems (left panel), as well as eccentricities split into one-planet and

two-planet systems (middle and right panels). Recall that we only show results

for simulated one-planet systems with a < 1AU in order to compare with ob-

served WJ systems. The results for the two planet systems show the inner planet

eccentricity only. As expected, near-eq-mass produces the highest eccentric-

ities (see also Tables 5.1 - 5.3). No appreciable differences are observed between

fiducial and near-eq-mass.

185



0.0 0.2 0.4 0.6 0.8 1.0

e,ein

0

1

2

3

4

5

P
D

F

All WJ systems

fiducial

lognorm-mass

near-eq-mass

observed

0.0 0.2 0.4 0.6 0.8 1.0

e

0

1

2

3

4

5
One-planet WJ systems

0.0 0.2 0.4 0.6 0.8 1.0

ein

0

1

2

3

4

5
Two-planet WJ systems

Figure 5.6: Eccentricities of WJ systems, illustrating the dependence on planet
masses. The middle panel shows eccentricities of one-planet WJs and the right
panel shows the inner planet eccentricity of the two-planet systems. The left
panel combines the eccentricity distribution shown in the left in middle pan-
els. Black histograms indicate the fiducial run, while blue and red indicate
lognorm-mass and near-eq-mass respectively. Observed WJs are shown as
the dashed cyan histograms.

The choice of planet masses affects the relative spacing of the two-planet sys-

tems, but only marginally. Inspecting Table 5.2, the average values of aout/ain

for fiducial, near-eq-mass, and lognorm-mass are 2.46, 2.62, and 2.3.

As a result, the finding that in-situ scattering produces very compact, non-

hierarchical two-planet systems is robust to the choice of planet mass.

5.2.4 In-Situ Scattering of Four Planets

All scattering experiments discussed thus far began with initially three unsta-

ble planets. In this section we briefly discuss scattering of four unstable planets.

We construct a set of ∼ 1000 systems, consisting of four planets with masses

0.5, 1, 1.25, 2MJ (placed in random order), and all other parameters identical to

fiducial. We term this set of simulations 4-planets, integrate the systems

through “Phase 1” and “Phase 2,” and analyze the properties of the remain-
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ing planets following scattering. The effect of an additional planet allows more

possibilities for ejections. As a result, while fiducial (with three planets)

produces roughly equal numbers of one and two-planet systems, 4-planets

produces nearly four times more one-planet systems compared to two-planet

systems. The average eccentricity for one-planet systems from 4-planets is

eave = 0.35 (see also Table 5.4), compared eave = 0.3 from fiducial.

Figure 5.7 shows the two-planet systems produced for 4-planets, along

with fiducial for reference. The top panel of Fig. 5.7 shows that 4-planets

produces more hierarchical systems, with mean value of α = aout/ain = 4.13

(see also Table 5.4). The remaining panels of Fig. 5.7 show the inner and outer

planet eccentricities. Unsurprisingly, the eccentricities of both planets tend to be

higher, with an average inner planet eccentricity 0.2 for 4-planets compared

to 0.15 for fiducial.

5.3 Comparison with Observerations

The Exoplanet Orbit Database (exoplanets.org, Han et al., 2014) lists 106 gi-

ant planets (mp sin i > 0.3MJ) with WJ semi-major axes (0.1AU < a < 1AU)

and with eccentricity and mass measurements listed. Of these 106 systems, 83

lack detection of a giant planet companion, and 23 have an external giant com-

panion with a characterized mass and orbit. The majority of these two-planet

systems were previously discussed by Antonini et al. (2016), in the context of

high-eccentricity migration, and by Anderson et al. (2017), in the context of sec-

ular perturbations. We augment this sample with the well-known Kepler-419

system (Dawson et al., 2014), which is not flagged by our search criteria due to
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Figure 5.7: Properties of two-planet systems produced from 4-planets, along
with those from fiducial for reference. 4-planets consists of systems of
four initially unstable planets with masses 0.5, 1, 1.25, 2MJ, and all other param-
eters identical to fiducial. Top: Inner versus outer planet semi-major axis. The
blue open circles indicate fiducial (labeled as “3p” in the plot), and magenta
open circles plotted above indicate 4-planets (labeled as “4p”). Oberved two-
planet systems are shown as solid cyan circles (see also Section 5.3). Middle and
bottom: Eccentricities of the inner and outer planets, with the same color scheme
as the top panel. 4-planets produces more eccentric planets and wider spac-
ing compared to fiducial as expected.
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lack of planet mass listings on exoplanets.org.

In the following we compare our scattering results to this observed sample

of WJs. In all following discussions, if the initial number of planets (three ver-

sus four) under consideration is not explicitly stated, we are referring to three

planet scattering; if the 4-planets simulations are under discussion, it will be

explicitly noted.

5.3.1 Eccentricities

As discussed previously, in-situ scattering of three planets leads to a range of

eccentricities in the final (post-scattering) planetary orbits(s). The left panel of

Fig. 5.6 presents the combined eccentricity distributions of the one and two-

planet systems produced by scattering and the observed distribution, consisting

of e, the eccentricities of single WJs, and ein, the inner planet eccentricity of

the two-planet systems. Comparing the observed and simulated eccentricity

distributions, we see that in-situ scattering of three planets with a variety of

mass choices reproduces the observed distribution fairly well.

Next we separately discuss the eccentricities of the one and two-planet sys-

tems. Recall that the two-planet systems tend to have relatively low eccentric-

ities due to the fact that they formed exclusively via planet-planet collisions

(see Table 5.2). Comparing the observed and scattering model eccentricity dis-

tributions in Figs. 5.2e and 5.6, we see that although scattering is able to pro-

duce the full range of observed eccentricities, there is a clear discrepancy in the

shapes of the distributions, with a fairly flat distribution of observed eccentric-

ities. As a result, we conclude that in-situ scattering of three planets cannot
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adequately account for the full sample of observed two-planet systems. Addi-

tion of a fourth planet alleviates, but does not completely resolve this problem.

Inspecting Fig. 5.7, we see that the eccentricity distribution of 4-planets is in

better agreement with observations compared to fiducial, but still produces

too many low-eccentricity planets.

The single-planet systems, which previously suffered at least one ejection,

tend to have much higher eccentricities. Figs. 5.3 and 5.6 reveal that the in-situ

scattering of three planets can reproduce the substantial eccentricities of the ob-

served solitary WJs. The observed peak at low eccentricities is not reproduced.

The tension between the observed and scatteredeccentricity distributions of

both the one and two planet systems may be relieved if some of the observed

solitary WJs actually have an undetected external companion. Since scattering

most commonly results in two-planet systems with relatively low eccentrici-

ties, misclassifying some two-planet systems as one-planet systems may de-

crease the excess observed one-planet systems that are circular, and increase

the dearth of two-planet systems that are circular. To evaluate whether a sig-

nificant fraction of solitary WJs may in fact have an undetected giant planet

companion with properties consistent with in-situ scattering, we calculate the

radial-velocity semi-amplitude and orbital periods of the outer planet in our

simulated two-planet systems from fiducial, according to

KRV =
28.4 m/s√

1− e2

(
mp sin isky

MJ

)(
P

1 yr

)−1/3(
M?

M�

)−2/3

, (5.4)

(Cumming et al., 2008). In Fig. 5.8 we show the RV semi-amplitudes and or-

bital periods of the outer planet in the two-planet systems, where we have

assumed an isotropic distribution of sky-projected inclinations isky (uniform

in cos isky). Scattering produces a population of outer planets with RV semi-
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amplitudes mostly in the range ∼ 10 − 100m/s. Due to the compactness of the

two-planet systems, many systems have large RV amplitudes and short-orbital

periods (with Pout . 1 yr) which should be readily detected, but are typically

not observed.

To test whether undetected companions to solitary WJs may reconcile the

disparities in eccentricity distributions, we apply RVs cuts of 10 and 100 m/s

to the two-planet simulations from fiducial, and classify any two-planet sys-

tems as one-planet systems if the outer planet has an RV semi-amplitude less

than the specified cut. The results are shown in Fig. 5.9. A 10 m/s RV cut does

not appreciably change the original eccentricity distributions from fiducial.

A 100 m/s RV cut does provide a significantly better agreement with obser-

vations. However, since planets with tens of m/s RV amplitudes are readily

discovered, we conclude that there is unlikely to be a large population of un-

detected companions to observed single WJs with the properties obtained from

our scattering simulations. Thus, despite the apparent agreement in eccentric-

ity distributions between observed and simulated for all WJs, we conclude that

in-situ scattering is unable to separately reproduce the entire observed sample

of one and two-planet systems.

Instead, the eccentricity distribution is consistent with in-situ scattering hav-

ing occurred in a significant fraction of one-planet systems, along with a pop-

ulation of low-eccentricity planets that did not undergo scattering. Indeed, ev-

idence for two populations of WJs has been previously argued based on stel-

lar metallicities, consisting of a low-eccentricity population orbiting metal-poor

stars, and an eccentric population orbiting metal-rich stars (Dawson & Murray-

Clay, 2013). To help quantify the degree to which in-situ scattering may be
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Figure 5.8: Radial velocity semi-amplitude versus orbital period for the outer
planet. The fiducial simulations are shown as open blue circles, while ob-
served systems are shown as filled cyan circles. An isotropic distribution of
sky-projected inclinations has been assumed in calculating the expected radial
velocity semi-amplitude.

contributing to eccentric solitary WJs, we inject a population of low-eccentricity

planets to the one-planet systems from the fiducial scattering sample, as-

suming a half Gaussian peaked at e = 0 and with width σ (see Appendix D for

more details). Performing a maximum likelihood estimation for the parameters

of this mixture model, we find that the observed eccentricities of one-planet sys-

tems are consistent with an injected population of low-eccentricity planets (with

spread σ ≈ 0.07), constituting ∼ 35% of the total population, and the remain-

ing 65% from in-situ scattering. In other words, the eccentricity distribution of

observed solitary WJs is consistent with over half of them having previously un-
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Figure 5.9: The effect of imposing an RV cut on the eccentricity distributions
of one and two-planet systems from fiducial (shown as the thick black his-
togram). The left panel depicts eccentricities of one-planet systems and the right
panel depicts inner planet eccentricities of two-planet systems. We have classi-
fied any two-planet systems as one-planet systems if the outer planet has an
RV semi-amplitude less than the specified cut. Imposing a 10 m/s cut (blue
histograms) barely affects the eccentricity distributions. A 100 m/s cut (red
histograms) yields better agreement between simulations and observations for
both the one and two-planet systems. However, since planets with RV ampli-
tudes of tens of m/s are readily detectible, we conclude that missing compan-
ions to solitary WJs are unlikely to serve as a full solution to the disagreement
in eccentricity distributions.

dergone in-situ scattering of three giant planets, and the rest having a relatively

quiescent history.

5.3.2 Spacing and Mutual Inclinations of Two-Planet Systems

As previously discussed, scattering of three giant planets usually results in

closely spaced systems, with 90% of the fiducial two-planet systems satis-

fying aout/ain < 3 (see Fig. 5.5). Some observed systems are also quite closely

spaced (see Fig. 5.2a), but there exists many others that are much more hierar-
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chical.

The mutual inclinations generated via scattering are generally quite low,

with 90% of systems having inclinations less than 10 − 15◦, and median incli-

nations of ∼ 2◦. Except for a few special systems, observed giant exoplanet

systems lack constraints on mutual inclinations at present.

5.3.3 Relative Numbers of One and Two-Planet Systems

As mentioned previously, there are 83 WJs with eccentricity and mass con-

straints without a detected companion and 24 WJs with a characterized ex-

ternal companion, giving relative numbers of one and two-planet systems

N1,obs/N2,obs ' 3.5. However, note that 8 of the 83 solitary WJs have a linear

trend in the RV curve, indicating the possibility of an external companion. If we

assume the presence of a planetary companion in each of these 8 systems, then

N1,obs/N2,obs = 75/32 ' 2.3.

The three-planet scattering experiments (i.e. fiducial, lognorm-mass,

near-eq-mass, fiducial-K-3, fiducial-K-5) yield relative numbers of

single WJs and WJs with external companions N1,sim/N2,sim ' 0.5 − 1.5, where

the range arises from the choice of planet masses and initial spacing. As a

result, in-situ scattering predicts an excess of WJs with a giant planet com-

panion compared to observations. Four-planet scattering (4-planets) yields

N1,sim/N2,sim ' 3.3, in good agreement with observations.

Clearly, agreement between the predicted and observed relative frequency of

one and two-planet systems is not expected if in-situ-scattering occurred only
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in a fraction of WJ systems. Indeed, given the difficulties in separately matching

the eccentricity distributions of one and two-planet systems (See Section 5.3.1),

we should not expect these ratios to agree precisely.

Nonetheless, it is useful to also consider the extreme hypothesis that the

majority of WJs form in systems of three giant planets, which then undergo

scatterings. In this scenario, there are two ways of reconciling the discrepancy

between N1,obs/N2,obs and N1,sim/N2,sim:

1. A fraction of the 2-planet systems generated through scattering are ac-

tually unstable, so that N1,sim/N2,sim increases with time. Inspection of

Fig. 5.1 shows the fraction of two-planet systems has settled to a constant

value after ∼ 108 orbits of the inner planet. However, a number of these

two-planet could undergo instabilities over much longer timescales. Nu-

merous empirical stability criteria for two-planets in eccentric/inclined

orbits exist in the literature (e.g. Mardling & Aarseth, 2001; Petrovich,

2015c). However, such stability criteria are only reliable sufficiently far

from the “fuzzy” stability boundary. Using the Petrovich (2015c) stabil-

ity criterion, we find that over 90% of the fiducial two-planet systems

are classified as unstable, but fall in the uncertain regime of parameter

space near the boundary. Thus, the Petrovich (2015c) stability criterion

is overly conservative in this application. In addition, his stability cri-

terion does not consider the potentially stabilizing effects of GR apsidal

precession, as well as the possibility of planet-planet collisions. As a re-

sult, full numerical integrations over long timescales are needed, which

are prohibitively expensive. To evaluate how likely instabilities may be,

we randomly choose 30 of the closely-spaced two-planet systems (with
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aout/ain < 3) from the fiducial sample, and integrate the systems for

an additional 109 orbits of the inner planet, i.e. an order of magnitude

longer. Of these 30 systems, 3 became destabilized. We note that 109 or-

bits at many WJ distances is still short compared to the lifetimes of many

observed systems. We thus conclude that at least ∼ 10% of the two-planet

systems are expected to go unstable, but the actual percentage over Gyr-

timescales is likely higher. Under the assumption that all of the observed

single WJs are indeed single, so that the observed relative number of one

and two-planet systems (N1,obs/N2,obs) is equal to the true value, and using

the ranges N1,obs/N2,obs = 2.3 − 3.5 and N1,sim/N2,sim = 0.5 − 1.5, the per-

centage of two-planet systems that would need to eventually go unstable

is in the range 24%− 67%.

2. The second way of matching the observed and predicted ratios of one and

two-planet systems is if a fraction of the single WJs actually have an exter-

nal companion, probably with aout/ain < 3. The possibility of undetected

outer companions was already discussed in Section 5.3.1 and Fig. 5.8. Now

we discuss what fraction of observed one-planet systems must actually

have an external companion, in order to match the relative frequency of

one and two-planet systems obtained from observations. In this estimate,

we assume that all the two-planet systems obtained from N-body observa-

tions remain stable indefinitely, in order to obtain an upper bound on the

undetected companion requirement. Again using N1,obs/N2,obs = 2.3− 3.5

and N1,sim/N2,sim = 0.5 − 1.5 we find that 14% − 57% of single WJs must

have an undetected companion. Given the large (∼ 10−100 m/s) RV semi-

amplitudes predicted for the outer planet (see Fig. 5.8), we do not expect

a major fraction of single WJs to have an undetected external companion
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with properties predicted from our scattering experiments.

In summary: The relative numbers of observed of one and two-planet WJs is

consistent with scattering of four planets (4-planets), but is inconsistent with

scattering of only three planets (fiducial, etc). Under the extreme assump-

tion that in-situ scattering of three giant planets occurred in all WJ systems, the

relative numbers of one and two-planet WJ systems produced by in-situ scat-

tering are consistent with observations, provided that a fraction of two-planet

systems produced via scattering later undergo instabilities, or/and if some ob-

served solitary WJs have an undetected companion. Alternatively, the discrep-

ancy between the predicted and observed relative frequency of one and two-

planet systems is resolved if in-situ-scattering occurred only in a fraction of WJ

systems. Indeed, as discussed in Section 5.3.1, the large peak of low eccentric-

ities in the observed distribution of one-planet systems (and not reproduced in

the simulated one-planet systems) is consistent with two populations of WJs

in similar proportions: one having undergone violent scattering, and the other

having a quiescent dynamical history.

5.4 Summary of Results and Discussion

In this paper we have undertaken a comprehensive study of giant planet scatter-

ing at sub-AU distances from the host star, totaling∼ 8000 N-body integrations,

and including the effects of general relativistic apsidal precession. Our setup of

a system of giant planets in initially nearly circular orbits is consistent with a

systems of WJs that formed either in-situ or by disk migration without substan-

tial eccentricity excitation due to planet-disk interactions. The goal of this study
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is two-fold: (1) On observational grounds we aim to identify to what extent

planet scattering has contributed to the population of eccentric WJs. (2) On the-

oretical grounds, we systematically explore how in-situ scattering of WJs leads

to a mixture of collisions and ejections, and catalogue our findings. Most of

the paper focuses on systems of three initially unstable planets, but also briefly

considers four planets. For the parameters we considered, scattering results in

roughly equal proportions of one-planet and two-planet systems, the properties

of which we analyze in some detail (see also Figs. 5.2 and 5.3).

Our main results are as follows:

• Scatterings result in a combination of collisions and ejections over our ex-

plored parameter range. For systems with initially three planets, the first

(or only) scattering event results in planet-planet collisions 60% − 80% of

the time. For systems that later undergo a second scattering, planet ejec-

tions occur over 90% of the time.

• We present a distribution of collision impact parameters (see Fig. C.1).

Planet-planet collisions are usually grazing, rather than head-on.

• In-situ scattering tends to produce closely spaced two-planet systems. For

systems of initially three unstable planets, over 90% of the surviving two-

planet systems have a semi-major axis ratio aout/ain . 3. For systems

of initially four unstable planets, over 90% of two-planet systems have

aout/ain . 5.

• The combined eccentricity distribution of the one-planet WJ systems and

inner planet of two-planet systems produced by scattering agrees well

with the observed distribution (see the left panel of Fig. 5.6).
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• Splitting the surviving WJs into one and two-planet systems (see the mid-

dle and right panels of Fig. 5.6), we find some discrepancies between

the eccentricities produced by scattering and observations. Examining

the surviving two-planet systems, we find that scattering produces too

many low-eccentricity planets, due to the fact that all two-planet systems

arose from planet-planet collisions. This is inconsistent with the observed,

much flatter eccentricity distribution of WJs with a detected outer com-

panion. This discrepancy is alleviated, but not fully resolved by addition

of a fourth planet to the initial scattering setup (see Fig. 5.7).

• Examining the one-planet systems produced by scattering and comparing

with observed WJs lacking a giant planet companion, we find scattering

well reproduces the substantial tail of modest-to-high eccentricities, but

does not reproduce the observed peak of low eccentricities.

At first glance, in-situ scattering provides a promising match to the entire

WJ eccentricity distribution, as illustrated in the left panel of Fig. 5.6. However,

splitting the results into one and two-planet systems yields an excess of circu-

lar two-planet systems, and a dearth of circular one-planet systems. A natural

resolution to this puzzle is if observed solitary WJs have an undetected outer

companion, thereby shifting the excess of circular planets from the two-planet

systems to the one-planet systems. However, given the large RV amplitudes of

the outer planets obtained from our scattering experiments (10 − 100 m/s, see

Fig. 5.8), undetected outer companions probably cannot resolve the difference

(Fig. 5.9).

The properties of the two-planet systems generated through in-situ scatter-

ing are also inconsistent with some of the observed two-planet systems. Be-
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sides the disagreement in the shapes of the eccentricity distributions, the rel-

ative spacings of two-planet systems are more compact than many observed

systems. The tendency for scattering to result in two-planet systems quite close

to the stability limit was pointed out by Raymond et al. (2009). We note that

the architectures of the compact observed systems HD73526 and HD82943, and

are consistent with previously having undergone scattering, due to the close

spacing and modest eccentricities (although the possibility of the planets sim-

ply forming in the observed configuration cannot be dismissed). The observed

two-planet systems with aout/ain ∼ 10 are more difficult to produce through

in-situ scattering. However, such systems may be still have participated in a

scattering event which originated at ∼ AU distances, as explored by (Mustill

et al., 2017). A thorough exploration of the parameter space for initial systems

consisting of a single WJ and two or more unstable planets at ∼ several AU is

an important, but computationally expensive problem.

The two-planet systems also suffer from some uncertainties. Although these

systems appear to be at least temporary stable (see Fig. 5.1), some may later be-

come unstable. Follow-up long-term integrations of a small subset of the two-

planet systems (spanning 109 orbits of the inner planet) indicate that∼ 10% will

eventually go unstable, but the actual number may be higher over timescales

comparable to observed ∼ Gyr system ages. In addition, since the two-planet

systems formed exclusively through planet-planet collisions, their properties

are dependent upon the assumed treatment of planet collision (see also Ap-

pendix C). Since the majority of one-planet systems did not experience any

planet-planet collisions, their properties are robust.

The results of this paper suggest that in-situ scattering is a promising mecha-
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nism in accounting for the substantial eccentricities of many observed “solitary”

WJs (those lacking an observed giant planet companion). In a given system, the

occurrance of at least one planet ejection allows for efficient eccentricity excita-

tion. As previously discussed in Section 5.3.1, the resulting eccentricity distri-

bution (of one-planet systems) obtained through scattering does not reproduce

the observed peak at low eccentricities. Constructing a mixture model consist-

ing of our scattering results and an injected population of planets with a low-

eccentricities (see Appendix D), we find that the eccentricity distribution of ob-

served solitary WJs is consistent with half or more of systems having undergone

in-situ scattering, and the rest having a quiescent history. Two populations of

WJs have been previously proposed by Dawson & Murray-Clay (2013), consist-

ing of a low-eccentricities around low-metallicity stars, and higher eccentricities

around high-metallicity stars. Scattering is clearly consistent with such a metal-

licity trend, under the expectation that multiple closely spaced giant planets

form more easily around higher metallicity stars.

Thus, we conclude that the observed eccentricity distribution of solitary WJs

is consistent with roughly half having undergone in-situ scattering, and the

other half having a more quiescent dynamical history. This is consistent with

the fact that a substantial fraction (∼ 50%) of WJs are thought to have low-mass

companions (Huang et al., 2016), if we imagine a planet formation scenario in

which the vast majority of WJs form with other planets nearby, either low-mass

or giant planets. However, we acknowledge the substantial theoretical uncer-

tainties of forming even one WJ in-situ, much less multiple planets.
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CHAPTER 6

ECCENTRICITY AND SPIN-ORBIT MISALIGNMENT IN

SHORT-PERIOD STELLAR BINARIES AS A SIGNPOST OF HIDDEN

TERTIARY COMPANIONS

6.1 Introduction

Stellar binaries can exhibit a rich variety of dynamical behavior. In systems

with sufficiently small separations, the orbit can precess due to non-Keplerian

potentials (e.g. general relativistic corrections), and may also be sculpted by

tidal dissipation. If the binary is a member of a higher multiplicity system, or

previously experienced a close encounter with a neighboring star, the orbital

properties can be further modified. In many observed binary systems, whether

the orbital elements reflect the properties of the protostellar cloud, or result from

post-formation dynamical evolution, remains an open question. Distinguishing

between the two possibilities can shed light into star and binary formation pro-

cesses.

A possible signature of post-formation dynamical evolution is stellar spin-

orbit misalignment (obliquity). One method of probing stellar obliquities in bi-

naries is by comparing the inclination of the stellar equator (estimated through

measurements of v sin i and the rotational period) with the orbital inclination.

Using this method, Hale (1994) found that solitary binaries tend to have low

This chapter is adapted from Anderson et al. (2017)
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obliquities when the separation is less than 30 − 40 AU, but for separations be-

yond 30 − 40 AU, the obliquities are randomly distributed. However, for bi-

naries residing in hierarchical multi-systems, even those with small separations

can have substantial spin-orbit misalignments, as a result of post-formation dy-

namical evolution.

More recently, obliquities have been inferred from measurements of the

Rossiter-McLaughlin effect (Rossiter, 1924; McLaughlin, 1924). A handful of

eclipsing binaries have orbital axes that are misaligned (in projection) with re-

spect to the spin axis of one or both members. In the ongoing BANANA Project,

an effort to measure obliquities in comparable-mass eclipsing binaries, Albrecht

et al. (2007, 2009, 2011, 2013, 2014) present Rossiter-McLaughlin measurements

of several systems. Thus far, four systems exhibit spin-orbit alignment (Albrecht

et al., 2007, 2011, 2013), while two systems contain misaligned components: in

DI Herculis both the primary and secondary are misaligned, with λpri ' 72◦

and λsec ' −84◦ (Albrecht et al., 2009); in CV Velorum, the primary and sec-

ondary have λpri ' −52◦ and λsec ' 3◦ (Albrecht et al., 2014). A complementary

study of spin-orbit misalignments in unequal mass eclipsing binaries (consist-

ing of FGK-M members) is being undertaken via the EBLM project (Triaud et al.,

2013). Although the current sample of binaries with Rossiter-Mclaughlin mea-

surements still consists of only a few members, these efforts, and others (e.g.

eclipsing binaries observed by Kepler, see Dong et al. 2013), will increase the

sample in the coming years.

In general, it is not clear whether large spin-orbit misalignments in eclips-

ing binaries are primordial (reflecting the initial state of the protostellar cloud),

or have been driven to misalignment due to dynamical interactions with a per-
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turber. In this paper, we consider the latter scenario, where the eclipsing binary

is the inner component of a hierarchical triple stellar system, with a tertiary

companion orbiting the center of mass of the inner binary. If the inclination be-

tween the inner and outer orbits is sufficiently high, the eccentricity of the inner

binary can undergo periodic excursions to large values, known as Lidov-Kozai

(LK) cycles (Lidov, 1962; Kozai, 1962), see also Harrington (1968). It is widely

believed that binaries with Porb . 7 days are not primordial, but have evolved

from wider configurations via LK cycles with tidal friction (Mazeh & Shaham,

1979; Eggleton & Kiseleva-Eggleton, 2001; Fabrycky & Tremaine, 2007; Naoz &

Fabrycky, 2014). Indeed, binaries with periods shorter than this threshold are

known to have high tertiary companion fractions [of up to 96 % for periods

< 3 days; see Tokovinin et al. (2006)], supporting the idea that three-body in-

teractions have played a major role in their formation. There should also exist

a population of longer-period, eccentric binaries that are undergoing LK-driven

orbital decay (see Dong et al. 2013).

It is important to recognize that even a strong perturbation from a tertiary

companion on the inner binary does not guarantee the production of spin-orbit

misalignment in the inner binary. If the inner binary achieves a sufficiently small

pericenter distance, a torque due to the stellar quadrupole (arising from stellar

oblateness) may induce a change in the direction of the spin axis, but the degree

of spin-orbit misalignment depends on several factors. In previous work (Storch

et al., 2014; Anderson et al., 2016), we have investigated the spin dynamics of a

planet-hosting star, as a result of the planet undergoing LK oscillations due to

a distant stellar companion (see also Storch & Lai, 2015). The evolution of the

stellar spin-axis can be complicated, with several qualitatively distinct types of

possible behavior, depending on the combination of planet mass, stellar spin
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period and the orbital geometries of the inner and outer binaries. In particular,

for increasingly massive planets (Mp & 5−10MJ ), the coupling between the star

and planet can be so strong that spin-orbit misalignment cannot be generated,

despite drastic changes in the orbital inclination. As the mass of the secondary

body increases from the planetary to the stellar regime, the ability to generate

spin-orbit misalignment is even further hindered.

In light of these previous results, the main goal of this paper is to identify

under what circumstances large spin-orbit misalignment can be generated in

stellar binaries, due to secular interactions with a tertiary companion. Tertiary

companions can also excite the binary eccentricity. Another goal of this paper is

thus to identify the requirements for a tertiary companion to increase the eccen-

tricity of the inner binary from e ' 0 to an observed eccentricity e = eobs. The

results of this paper will help interpret current observations of eclipsing bina-

ries, and guide future efforts to detect tertiary companions in binaries exhibiting

large spin-orbit misalignment and/or high eccentricities.

We do not consider the effects of tidal dissipation in this study. If tidal dissi-

pation is sufficiently strong to circularize the orbit, it will almost certainly align

the spin axis with the orbital axis on a shorter timescale, thereby erasing any

obliquity excitation due to the outer companion. To avoid this complication, we

focus here exclusively on the subset of systems that achieve minimum pericen-

ter distances that are too large for dissipative tides to act. This is in similar spirit

to the focus of the BANANA Project (Albrecht et al., 2011).

This paper is organized as follows. In Section 6.2, we review aspects of LK

oscillations in hierarchical triples with comparable masses, and including the

effects of short-range forces (due to general relativity and tidal and rotational
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distortion). This section also contains new results concerning the “LK window”

of inclinations for eccentricity excitation under general conditions. In Section 6.3

we discuss the spin-orbit dynamics of binaries undergoing LK cycles, and iden-

tify a requirement for generating spin-orbit misalignment. Section 6.4 presents

numerical integrations of the octupole-order secular equations of motion for a

large number of triple systems, and compares with the analytic results in Sec-

tions 6.2 and 6.3. In Section 5, we apply the results to the observed eclipsing

binary system DI Herculis, and conclude in Section 6.

6.2 Lidov-Kozai Cycles in Triples with Comparable Angular

Momentum and Short-Range Forces

6.2.1 Setup and Equations

We consider a hierarchical triple stellar system, composed of an inner binary

with masses m0 and m1, and outer companion with mass m2, orbiting the center

of mass of m0 and m1. In this notation, m0 is the primary body of the inner

binary, so that the secondary body always satisfies m1 ≤ m0. The reduced mass

for the inner binary is µin = m0m1/m01, with m01 ≡ m0 + m1. Similarly, the

outer binary has reduced mass µout = m01m2/m012 with m012 ≡ m0 + m1 +

m2. The orbital semi-major axis and eccentricity of the inner and outer binaries

are (ain, ein) and (aout, eout) respectively. For convenience of notation, we will

frequently omit the subscript “in,” and define e = ein and j =
√

1− e2
in. The

orbital angular momenta of the inner and outer binaries are denoted by Lin and

Lout respectively.
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When the inclination between the inner and outer binaries is sufficiently

high, the eccentricity and inclination of the inner binary can undergo large,

cyclic excursions, known as Lidov-Kozai (LK) oscillations (Lidov, 1962; Kozai,

1962). See, for example, Fig. 1 of Holman et al. (1997). These oscillations are

driven by the disturbing potential from the tertiary companion. To quadrupole

order of the potential, the oscillations occur on a characteristic timescale tk given

by
1

tk
=

m2

m01

a3
in

a3
out,eff

n, (6.1)

where n =
√
Gm01/a3

in is the orbital mean motion of the inner binary, and we

have introduced an “effective outer binary separation” aout,eff ,

aout,eff ≡ aout

√
1− e2

out. (6.2)

The octupole potential of the outer companion further contributes to the sec-

ular dynamics of the system, introducing under some conditions even higher

maximum eccentricities and orbit flipping (Ford et al., 2000; Naoz et al., 2013a),

as well as chaotic orbital evolution (Li et al., 2014). The “strength” of the oc-

tupole potential (relative to the quadrupole) is determined by

εoct =
m0 −m1

m0 +m1

ain

aout

eout

1− e2
out

. (6.3)

Thus, for equal-mass inner binaries (m0 = m1), or outer binaries with eout = 0,

the octupole contributions vanish.

Additional perturbations on the orbit of the inner binary occur due to short-

range-forces (SRFs), including contributions from general relativity (GR), and

tidal and rotational distortions of the inner bodies. These non-Keplerian po-

tentials introduce additional pericenter precession of the inner orbit that acts to

reduce the maximum achievable eccentricity (e.g. Wu & Murray, 2003; Fabrycky
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& Tremaine, 2007), and can suppress the extreme orbital features introduced by

octupole-level terms (Liu et al., 2015).

In Section 6.2, for simplicity, we treat the secondary body in the inner binary

(m1) as a point mass (although m1 can be comparable to m0). As a result, we

do not consider the SRFs from tidal and rotational distortion of m1.2 In order to

attain analytical results, for the rest of this section we consider the gravitational

potential of the tertiary companion only to quadrupole order (except in Section

6.2.5, where we briefly discuss coplanar hierarchical triples). These results are

thus exact for equal-mass inner binaries (m0 = m1), or outer binaries with eout =

0. In Section 4, we perform numerical integrations with octupole included, and

including all SRFs (GR, and tidal and rotational distortion in both m0 and m1).

Here we present key results of LK oscillations with SRFs in systems where

the angular momenta of the inner and outer binaries are comparable. The re-

sults of this section review and generalize several previous works. For example,

Fabrycky & Tremaine (2007) derived the expression for the maximum eccentric-

ity in LK oscillations (emax) with the effects of GR included, in the limit where the

angular momentum ratio satisfies Lin/Lout → 0. Liu et al. (2015) presented re-

sults for general SRFs (GR, tides and rotational distortion) and general angular

momentum ratios. For Lin/Lout � 1, they identified the existence of a “limit-

ing eccentricity” (see Section 6.2.3), but for general Lin/Lout, Liu et al. (2015) did

not fully explore the behavior of emax and the boundaries of parameter space

that allow LK oscillations (the “LK window,” see Section 6.2.2). When SRFs are

neglected, the equations for general Lin/Lout are first given by Lidov & Ziglin

2For example, the potential energy due to tidal distortion of m1 is WTide,1 ∼ k2,1Gm
2
0R

5
1/r

6,
while the energy due to tidal distortion of m0 is WTide,0 ∼ k2,0Gm

2
1R

5
0/r

6, where k2,0 and k2,1
are the Love numbers of m0 and m1. For the low mass main-sequence stars of interest in this
paper, with R ∝ m0.8, we have WTide,1/WTide,0 ∼ (m1/m0)2 . 1.
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(1976) (and rederived by Naoz et al. 2013a), along with the analytical expres-

sion for the LK window. This is further studied by Martin & Triaud (2016) in

the context of circumbinary planets.

The total orbital angular momentum of the system3 Ltot = Lin + Lout is con-

stant, with magnitude

L2
tot = L2

in + L2
out + 2LinLout cos I, (6.4)

where I is the mutual inclination between the two orbits. To quadrupole order,

eout and Lout are constant. We can rewrite Eq. (6.4) in terms of the conserved

quantity K, where

K ≡ j cos I − η

2
e2 = constant, (6.5)

and where we have defined

η ≡
(
Lin

Lout

)
ein=0

=
µin

µout

[
m01ain

m012aout(1− e2
out)

]1/2

. (6.6)

In the limit of Lin � Lout (η → 0), Eq. (6.5) reduces to the usual “Kozai con-

stant,”
√

1− e2 cos I = constant. We will set the initial eccentricity e0 ' 0 for

the remainder of this paper, so that K ' cos I0. See Appendix B for a brief

consideration of the initial condition e0 6= 0.

The total energy per unit mass is conserved, and (to quadrupole order) given

by

Φ = ΦQuad + ΦSRF. (6.7)

The first term in Eq. (6.7), ΦQuad, is the interaction energy between the inner and

3We have neglected the contribution from the spins ofm0 andm1, since for stellar parameters
of interest in this paper, the spin angular momentum S of each star satisfies S/Lin � 1.
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outer binaries,

ΦQuad = −Φ0

8

[
2 + 3e2 − (3 + 12e2 − 15e2 cos2 ω) sin2 I

]
= −Φ0

8

{
2 + 3e2 − (3 + 12e2 − 15e2 cos2 ω)

×
[
1− 1

j2

(
K +

η

2
e2

)2]}
. (6.8)

where ω is the argument of pericenter of the inner binary, and

Φ0 =
Gm2a

2
in

a3
out,eff

. (6.9)

The second term in Eq. (6.7), ΦSRF, is an energy term due to short-range

forces (SRFs) that lead to additional pericenter precession. The contributions to

ΦSRF consist of the general relativistic correction, as well as tidal and rotational

distortion of m0, so that ΦSRF = ΦGR + ΦTide + ΦRot, with (e.g. Liu et al., 2015)

ΦGR = −εGR
Φ0

j
,

ΦTide = −εTide
Φ0

15

1 + 3e2 + (3/8)e4

j9
,

ΦRot = −εRot
Φ0

2j3
, (6.10)

where

εGR ' 3× 10−2
m̄2

01 ā
3
out,eff

m̄2 ā4
in

,

εTide ' 9.1× 10−7
k̄2,0 m̄1 m̄01 R̄

5
0 ā

3
out,eff

m̄2 m̄0 ā8
in

,

εRot ' 2.9× 10−5

(
P∗

10 d

)−2 k̄q,0 m̄01 R̄
5
0 ā

3
out,eff

m̄0 m̄2 ā5
in

. (6.11)

Here, P? is the spin period of m0. The various dimensionless masses and radii,

m̄i and R̄i are the physical quantities scaled by M� and R�. āin = ain/1 AU,

and āout,eff = aout,eff/100 AU. k̄2,0 is the tidal Love number of m0 scaled by its
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canonical value k2,0 = 0.03. Similarly, k̄q,0 depends on the interior structure of

m0 and helps quantify the degree of rotational distortion, and is scaled by its

canonical value kq,0 = 0.01 (Claret & Gimenez, 1992)4. Corresponding terms for

the tidal and rotational distortions of m1 are obtained by switching the indices

0 and 1 in Eqs. (6.11) (but are neglected in Section 2).

In the expression for ΦRot in Eq. (6.10), we have assumed alignment of the

spin and orbital axes. When the spin and orbital axes are not aligned, ΦRot de-

pends on the spin-orbit misalignment angle. In this situation, the problem is no

longer integrable, and numerical integrations are required (however, see Cor-

reia 2015 for an analytic treatment). In order to attain analytic results, we will

assume that the spin and orbital axes are aligned for the remainder of Section

2, and consider the spin-orbit dynamics separately, in Section 4 via numerical

integrations.

For the system parameters of interest in this paper, the GR contribution to

the SRFs usually dominates over the rotational contribution at low to moder-

ate eccentricities, and the tidal contribution dominates at very high eccentric-

ities (e & 0.9). As a result, ΦRot can often be neglected. This approximation

requires that S � Lin (where S is the spin angular momentum of m0), and

is always satisfied for the systems considered in this paper. We also require

εRot/2j
3 . 1 (so that the rotational contribution does not suppress the LK cy-

cles), and εRot/2j
3 . εGR/j (so that ΦRot . ΦGR, i.e. rotational distortion is

neglible compared to GR). Thus, ignoring the effects of rotational distortion is

4kq,0 = (I3 − I1)/m0R
2
0Ω̂2

0, where I1 and I3 are the principal moments of inertia, and Ω̂0 is
the spin rate of m0 in units of the breakup rate. kq,0 is related to the apsidal motion constant κ
by kq,0 = 2κ/3.
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justified for eccentricities that satisfy

1− e2 & 5.9× 10−4

(
k̄q,0m̄01R̄

5
0 ā

3
out,eff

m̄0m̄2ā5
in

)2/3(
P?

10 d

)−4/3

, (6.12)

and

1− e2 & 4.8× 10−4 k̄q,0R̄
5
0

m̄0m̄01āin

(
P?

10 d

)−2

. (6.13)

Therefore, ΦRot is often negligible, unless the spin period is exceptionally rapid,

or if the star has a large radius.

For a given initial condition (I0 and e0 ' 0), the conservation of Φ (Eq. [6.7])

and K ' cos I0 (Eq. [6.5]), yield e as a function of ω. The maximum eccentricity

(where de/dω = 0), is achieved when ω = π/2 and 3π/2.

6.2.2 Range of Inclinations Allowing Eccentricity Excitation

The “window” of inclinations allowing LK oscillations (starting from an initial

eccentricity e0 ' 0) can be determined by enforcing emax > 0. Expanding for

e2 � 1, the conservations of energy and K = cos I0 [valid to O(e6)] reduce to

ae6 + be4 + ce2 = 0, (6.14)

where

a =
η2

4

(
4− 5 cos2 ω

)
− εGR

6
+

5εRot

12
+ 7εTide

b =
η2

4
+ (4− 5 cos2 ω)(1 + η cos I0)− 1

−εGR

3
+
εRot

2
+

10εTide

3

c = 5 cos2 ω sin2 I0 + 5 cos2 I0 + η cos I0 − 3

+
4εGR

3
+ 2εRot +

4εTide

3
.

(6.15)
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Figure 6.1: Left and center panels: The “window” of inclinations (shaded regions)
that allow LK oscillations, versus the angular momentum ratio η, for various
values of εGR (we have set εTide = εRot = 0). The solid lines are obtained from
Eq. (6.19), and the dashed line from Eq. (6.23). Inside the window, the LK maxi-
mum eccentricity is also shown, as calculated in Section 6.2.3, Eq. (6.24). Combi-
nations of cos I0 and η below the dashed line allow LK eccentricity oscillations,
but these oscillations are not connected to the e0 ' 0 trajectory. This is illustrated
in the rightmost panel, where we show example phase space trajoctories (ω, e)
for energies corresponding to the colored crosses in the neighboring uppermost
panel (with εGR = 1.0).

For e > 0, Eq. (6.14) becomes

ae4 + be2 + c = 0. (6.16)

This equation determines e as a function of ω for various parameters I0, η, εGR,

εTide, and εRot. The maximum eccentricity occurs at ω = π/2 and 3π/2. In order

for this emax 6= 0 be reachable from e0 ' 0, we require that Eq. (6.16) admit

e = e0 ' 0 as a solution for some value of ω0 ≡ ω(e0). Evaluating Eq. (6.16) at

e = e0 = 0 yields

cos2 ω0 = −5 cos2 I0 + η cos I0 − 3 + εSRF

5 sin2 I0

, (6.17)
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where we have defined

εSRF ≡
4

3
εGR + 2εRot +

4

3
εTide. (6.18)

Requiring that cos2 ω0 ≥ 0 translates into the condition

(cos I0)− ≤ cos I0 ≤ (cos I0)+, (6.19)

where

(cos I0)± =
1

10

(
− η ±

√
η2 + 60− 20εSRF

)
. (6.20)

In order for (cos I0)± to be real, η and εSRF must satisfy

η2 + 60− 20εSRF ≥ 0. (6.21)

If εSRF < 3 then Eq. (6.21) is satisfied for all values of η. If εSRF > 3 and Eq. (6.21)

is not satisfied, eccentricity oscillations cannot be induced for any value of cos I0.

Note that while (cos I0)+ is less than unity for all values of η and εSRF (pro-

vided that Eq. [6.21] is satisfied), (cos I0)− > −1 only when

η < 2 + εSRF and η < 10. (6.22)

On the other hand, requiring that cos2 ω0 ≤ 1 implies that

cos I0 ≥ −
2

η

(
1 +

1

2
εSRF

)
. (6.23)

Thus, if η > 2εSRF, then the condition cos I0 ≥ (cos I0)− (in Eq. [6.19]) must

be replaced by Eq. (6.23). If εSRF = 0, the requirement that cos I0 ≥ −2/η is

recovered, as identified by Lidov & Ziglin (1976).

The above conditions (Eqs. [6.19] and [6.23]) guarantee that energy conser-

vation Eq.(14) has a physical solution (e, ω) = (0, ω0). Requiring e2 = e2
max > 0 at

ω = π/2 implies that c(cosω = 0) < 0, which translates into the condition (6.19).
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Figure 6.1 shows the “LK window” of inclinations allowing eccentricity os-

cillations, determined by Eqs (6.20) and (6.23), as a function of η, for several

illustrative values of εGR (and with εTide, εRot = 0). At moderate eccentric-

ities, the SRF contribution due to GR dominates over the tidal contribution

(since εTide � εGR), and for solar-type stars, GR also dominates over the ro-

tational distortion (since εRot � εGR). As a result, adopting the approximation

εTide, εRot = 0 is often a valid approximation, except for eccentricities near unity,

or for large values of the stellar radius and spin rate, see Eqs. (6.12) and (6.13).

Inside the LK window, the maximum eccentricity is also shown, as cal-

culated in Section 6.2.3, Eq. (6.24). When εGR = 0 and η = 0, the win-

dow of inclinations allowing LK oscillations is given by the well known form

−
√

3/5 ≤ cos I0 ≤
√

3/5. For increasing εGR, the window narrows for most

values of η. When εGR > 2.25, the window closes and eccentricity oscillations

are completely suppressed for small values of η. For larger (& 1) values of η,

LK oscillations remain possible, but occur only within a very narrow range of

inclinations, and are limited to retrograde (cos I0 < 0) configurations. We find

that for εGR & 5, the LK window is so narrow for all values of η, that LK os-

cillations are for all practical purposes completely suppressed. The rightmost

panel of Fig. 6.1 shows phase-space trajectories (contours of constant energy)

for two representative points. The trajectory located just inside the LK window

shows that the eccentricity can increase to a large value, starting from e0 ' 0.

In contrast, the trajectory just outside of the LK window does not connect to

e0 ' 0. As a result, for (η, cos I0) located below the dashed curves in Fig. 6.1, LK

oscillations starting from e0 ' 0 are completely suppressed.

215



6.2.3 Maximum and Limiting Eccentricities

Evaluating the eccentricity at e0 = 0 (where I = I0) and e = emax (where ω =

π/2), allows energy and angular momentum conservation to be expressed as

3

8

j2
min − 1

j2
min

[
5

(
cos I0 +

η

2

)2

−
(

3 + 4η cos I0 +
9

4
η2

)
j2

min

+ η2j4
min

]
+

(
ΦSRF

Φ0

)∣∣∣∣emax

0

= 0,

(6.24)

where jmin ≡
√

1− e2
max. When the effects of SRFs are negligible, and in the

limit η → 0, the solution of Eq. (6.24) yields the well-known relation emax =√
1− (5/3) cos2 I0. Note that the properties of the tertiary companion (aout, eout,

m2) enter Eq. (6.24) only through the combination aout,eff/m
1/3
2 and η.

For general η, εGR, εTide, and εRot, Eq. (6.24) must be solved numerically for

emax. Fig. 6.2 shows an example of emax versus I0, for an equal-mass inner binary

(m0 = m1 = 1M�) with an orbital period of 15 days, a low-mass outer compan-

ion (m2 = 0.1M�), and outer binary separations, aout = 10ain, 30ain, 65ain as

labeled.

Inspection of Fig. 6.2 reveals that there is a maximum (limiting) achievable

value of emax, denoted here as elim, which occurs at a critical initial inclination

I0,lim. This limiting eccentricity elim occurs when the initial inclination satisfies

the condition demax/dI0 = 0, or when djmin/dI0 = 0. Defining jlim ≡
√

1− e2
lim,

and differentiating Eq. (6.24) with respect to I0, we find that I0,lim is given by

cos I0,lim =
η

2

(
4

5
j2

lim − 1

)
, (6.25)

Obviously, the existence of I0,lim requires η < 2/(1 − 4j2
lim/5). Notice that I0,lim

depends on both η, and on the strength of the SRFs (through elim). When η → 0,

I0,lim → 90◦. As η increases, the critical inclination is shifted to progressively
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retrograde values (I0,lim > 90◦).

Substituting Eq. (6.25) into Eq. (6.24), we find that the limiting eccentricity

elim is determined by

3

8
(j2

lim − 1)

[
− 3 +

η2

4

(
4

5
j2

lim − 1

)]
+

(
ΦSRF

Φ0

)∣∣∣∣e=elim
e=0

= 0. (6.26)

Equation (6.26) may sometimes permit a physical solution for j0,lim, but im-

ply unphysical values for cos I0,lim. In such cases, elim cannot be achieved. As

a result, any solution obtained from Eq. (6.26) must also be substituted into

Eq. (6.25) to ensure that cos I0,lim exists.

Figure 6.3 shows elim and I0,lim as determined from Eq. (6.25) and Eq. (6.26),

along with the ranges of inclinations allowing LK oscillations of any amplitude,

from Eqs. (6.19) and (6.23), as a function of aout,eff/m
1/3
2 . In this example, we have

set ain = 0.17 AU and eout = 0, and adopted two values of the tertiary mass: a

solar-type perturber (m2 = 1M�) and a brown dwarf perturber (m2 = 0.1M�).

Since Eq. (6.26) depends on η only through η2, elim is nearly degenerate in terms

of aout/m
1/3
2 for the adopted parameters in Fig. 6.3. For the solar-mass tertiary,

I0,lim ' 90◦ for all values of aout,eff , because η � 1 is always satisfied. For the

brown dwarf tertiary, I0,lim > 90◦ for small values of aout,eff , because η ∼ 1.

6.2.4 Constraints on Hidden Tertiary Companions from Inner

Binary Eccentricities

For an observed binary system with eccentricity eobs, we can derive constraints

on a possible unseen tertiary companion driving the eccentricity from e0 ' 0

to e = eobs through LK cycles. The LK maximum eccentricity must satisfy
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Figure 6.2: The maximum eccentricity of the inner binary, versus the initial
inclination I0. We have fixed m0 = m1 = 1M�, m2 = 0.1M�, ain = 0.17
AU (so that the orbital period is ∼ 15 days), eout = 0, and varying aout, as
labeled. The solid curves show results with SRFs included, and the dashed
curves show results without SRFs. The dotted curve depicts the standard result
emax =

√
1− (5/3) cos2 I0, applicable in the limit η → 0 and εGR, εRot, εTide → 0.
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emax ≥ eobs; this places constraints on the mass of the perturber, and the range of

mutual inclinations I0 and effective outer separations aout,eff . In Fig. 6.4, we plot

curves of constant emax = 0.2, 0.5, 0.8 in (I0, aout) space assuming an equal mass

inner binary (m0 = m1 = 1M�) with orbital period Porb = 15 days, eout = 0,

and adopting both solar-type and brown-dwarf perturbers. The curves were

obtained by solving Eq. (6.24). For a given emax contour, the regions inside the

curve indicate the parameter space able to produce e ≥ emax. For example, if an

observed binary system has eobs = 0.8, a solar-mass perturber must be located

within∼ 10 AU in order to produce the observed eccentricity, and the necessary

inclination is restricted to the range 60◦ . I0 . 120◦. Similarly, a brown-dwarf

companion must be located within ∼ 6 AU, most likely in a retrograde orbit

(I0 & 90◦).

For η � 1, the properties of the outer perturber required to produce a given

eccentricity can be explicity calculated, without having to resort to numerical

root-finding in Eq. (6.24) or Eq. (6.26). Neglecting the SRF contribution from ro-

tational and tidal distortion (so that εRot = εTide = 0), the LK window (Eq. [6.20])

is

| cos I0| ≤
1

5

√
15− 20

3
εGR. (6.27)

Thus, LK oscillations are completely suppressed (emax = 0) when εGR satisfies

(see also Liu et al. 2015)

εGR >
9

4

(
1− 5

3
cos2 I0

)
for η � 1. (6.28)

For an inner binary with specified properties, this translates into a maximum

effective perturber distance for LK oscillations (of any amplitude) to occur:

aout,eff < 19.6 AU

(
m̄2

m̄2
01

)1/3(
ain

0.1 AU

)4/3(
1− 5

3
cos2 I0

)1/3

. (6.29)
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Figure 6.3: Limiting eccentricity elim and critical inclination I0,lim, as a function
of (aout/ain)m̄

−1/3
2 . The black curves show m2 = 1M�, and the red curves show

m2 = 0.1M�. The other parameters are m0 = m1 = 1M�, ain = 0.17 AU, and
eout = 0. In the lower panel, the solid lines indicate I0,lim, and the dashed lines
show the range of inclinations capable of exciting LK oscillations (I0,±), as de-
termined from Eqs. (6.19) and (6.23). As Lout decreases relative to Lin (i.e. η & 1),
I0,lim is shifted to progressively retrograde values. For the brown dwarf tertiary,
cos I0,lim does not exist for small values of aoutm

−1/3
2 ; as a result elim cannot al-

ways be achieved. Notice that elim is nearly degenerate in terms of (aout)m̄
−1/3
2

(thus the red and black curves nearly coincide in the top panel).
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the x-axis indicates combinations of (I0, aout) that will yield even higher maxi-
mum eccentricities. Results are shown for a solar-mass outer companion (top),
and a brown-dwarf outer companion (bottom). The inner binary properties are
fixed at m0 = m1 = 1M�, Porb = 15 days (ain = 0.17 AU), and eout = 0. See also
Fig. 6.13 where we show similar calculations applied to the eclipsing binary
system DI Herculis.
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Setting I0 = I0,lim = 90◦ yields the absolute maximum effective distance aout,eff

for LK oscillations to occur (for any inclination).

For η � 1, the limiting perturber distance able to drive the eccentricity to eobs

can be solved explicitly by setting emax = eobs = elim, and neglecting the terms in

Eq. (6.26) proportional to η2,

aout,eff '15.5 AU

(
ain

0.1 AU

)4/3(
m̄2

m̄2
01

)1/3

×
[
F1 + F2

m̄1R̄
5
0

m̄0m̄01

( ain

0.1AU

)−4
]−1/3

,

(6.30)

where we have defined

F1 =
1

jlim(jlim + 1)
(6.31)

F2 =
2.02× 10−2

1− j2
lim

[
1 + 3e2

lim + (3/8)e4
lim

j9
lim

− 1

]
. (6.32)

Expanding F1 and F2 appropriately, and setting elim = 0, recovers Eq. (6.29)

evaluated at I0 = 90◦.

In Fig. 6.5, we plot the maximum effective separation required to generate

an eccentricity eobs = 0.2 and 0.8, by solving Eq. (6.26). We also compare this

with the approximate (η � 1 limit) expression given in Eq. (6.30). The exact

solution agrees well with Eq. (6.30), because the criterion for determining the

limiting eccentricity (Eq. 6.26) depends on the angular momentum ratio only as

η2. Therefore, only when η → 1 does the approximate solution deviate from the

exact expression.
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Figure 6.5: Effective perturber distance required to generate a limiting eccen-
tricity elim, as labeled, as a function of the inner binary orbital period. The solid
lines depict a solar-mass outer perturber (m2 = 1M�), whereas the dashed lines
depict a low mass brown dwarf perturber (m2 = 0.05M�). The dashed lines
correspond to the expression (6.30), valid in the η → 0 limit. For a given inner
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6.2.5 Eccentricity Excitation in Coplanar Systems

If the inner and outer orbits are coplanar, and the octupole contribution is non-

vanishing (εoct 6= 0), the inner and outer binaries can exchange angular momen-

tum, thereby periodically exciting the eccentricity of the inner binary. In the case

of exact coplanarity, the maximum eccentricity can be calculated algebraically

(Lee & Peale, 2003).

The general interaction potential up to octupole order is given in, e.g. Ford

et al. (2000), Naoz et al. (2013a), and Liu et al. (2015). If the orbits are exactly

coplanar, the interaction energy simplifies to

ΦInt = ΦQuad + ΦOct

=
Φ0

8

[
− 2− 3e2 +

15

8
e(3e2 + 4)εoct cos ∆$

]
,

(6.33)

where ∆$ = $in − $out, with $ the longitude of periapsis. The total angular

momentum Ltot = Lin +Lout is also conserved. For a given set of orbital geome-

tries (so that both Φ and Ltot are fully specified), ein and eout as a function of ∆$

can be obtained. The maximum value of ein, emax occurs at either ∆$ = 0 or π,

depending on the initial value of ∆$, and whether ∆$ librates or circulates.

If either the inner or outer orbit is initially circular, the interaction energy is

independent of the initial orientation (∆$) of the two orbits. The procedure for

calculating emax is as follows: we specify the initial total energy Φ, including the

effects of SRFs (Φ = ΦInt + ΦSRF), and the angular momentum (Ltot), calculate e

as a function of ∆$, and determine the maximum value of e (see also Petrovich,

2015b). As before, we neglect the contribution to ΦSRF from rotational distortion

(ΦRot = 0).

In Fig. 6.6 we fix the properties of the inner binary (m0 = 1M�, m1 = 0.5M�,
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Porb = 15 days), and plot the maximum eccentricity for the two fiducial masses

for the perturber (1M� and 0.1M�), and varying initial values of eout. The so-

lar mass perturber must be sufficiently close (∼ 1 AU) and eccentric to excite a

substantial eccentricity in the inner binary. In such configurations, the secular

approximation is in danger of breaking down. The brown dwarf perturber is

able to excite higher eccentricities, with a sharp peak. The sharp peak of emax

at specific value of aout coincides when the angle ∆$ changes from circulating

to librating. The existence of librating solutions allows for higher maximum

eccentricities (Lee & Peale, 2003), and can be understood in terms of an “ap-

sidal precession resonance” (Liu et al., 2015b). This “resonance” occurs when

the apsidal precession of the inner binary (driven by GR and the outer binary)

matches that of the outer binary (driven by the inner binary). However, note

that this does not qualify as a “true resonance” (see Laskar & Robutel, 1995;

Correia et al., 2010; Laskar et al., 2012, for further discussion on the nature of

this “resonance”).

6.3 Spin-Orbit Dynamics in Systems Undergoing LK Oscilla-

tions

Due to rotational distortion, each member of the inner binary possesses a

quadrupole moment, causing a torque and mutual precession of the spin axis

S and the orbital axis Lin. Here we discuss the precession of the primary mem-

ber of the inner binary (m0). Similar results for the spin precession of m1 are

obtained by switching the indices 0 and 1 in the following expressions.
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The spin axis of m0 precesses around L̂in = L̂ according to

dŜ

dt
= ΩpsL̂× Ŝ, (6.34)

where the symbolˆdenotes unit vectors, and where the precession frequency Ωps

is given by

Ωps = −3Gm1(I3 − I1) cos θsl

2a3
inj

3S
. (6.35)

In Eq. (6.35), the spin-orbit angle is defined by cos θsl = Ŝ · L̂, and I3 − I1 are the

principle moments of inertia of m0. 5

Meanwhile, the orbital axis of the inner binary precesses and nutates around

the total orbital angular momentum axis J = Lin + Lout, with frequency ΩL =

|dL̂/dt|. In general, ΩL is a complicated function of eccentricity, but takes the

approximate form (Anderson et al., 2016).

ΩL '
3(1 + 4e2)

8tk
√

1− e2
| sin 2I|. (6.36)

Eq. (6.36) is exact at e = 0 and e = emax. Both Ωps and ΩL are strong functions of

eccentricity, and thus can undergo large variation during a single LK cycle.

As described in Storch et al. (2014), the dynamical behavior of Ŝ under the

influence of a secondary body undergoing LK oscillations depends on the ratio

|Ωps/ΩL|. Here we summarize the key aspects of the dynamics (see also Storch

& Lai 2015; Anderson et al. 2016):

If |Ωps| � |ΩL| throughout the LK cycle, denoted as the “non-adiabatic

regime,” Ŝ cannot “keep up” with L̂ as L̂ precesses around Ĵ. As a result, Ŝ

5There is also a spin-spin interaction, of order GQ0Q1/r
5, where Q0,1 = (J2mR

2)0,1 is
the rotation-induced quadrupole moment. This is much smaller than the S-L terms, of order
GQ0,1m1,0/r

3. In addition, spin-spin resonances may occur when the precession frequencies of
the spin axes (Eq. [6.35]) become equal (Correia et al., 2016). However, although this latter effect
is captured by our numerical integrations in Section 4, such spin-spin interactions do not play
an important dynamical role in the systems of interest here.
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effectively precesses around Ĵ, so that θsj ≡ cos−1(Ŝ · Ĵ) ' constant. On the

other hand, if |Ωps| � |ΩL| throughout the LK cycle, denoted as the “adia-

batic regime,” Ŝ “follows” L̂, and the spin-orbit angle θsl ' constant. Finally,

if |Ωps| ∼ |ΩL| at some point during the LK cycle, the dynamical behavior is

complicated due to secular resonances, and chaotic evolution of Ŝ can ensue

(Storch & Lai, 2015). We denote this as the “trans-adiabatic regime.”

In some cases, inclusion of the backreaction torque from the oblate star on

the orbit can considerably complicate this simple classification. In particular,

our previous work, beginning with Storch et al. (2014), focused on systems in

which the secondary member of the inner binary was a planet. In such cases, Lin

and S are often comparable during the high-eccentricity phases of the LK cycles,

and the backreaction torque from the oblate star on the orbit can be significant.

In contrast, here we consider a stellar mass secondary body, so that Lin � S is

well satisfied. As a result, the torque on the orbital axis from the oblate star is

negligible6, resulting in simplified behavior.

We introduce an “adiabaticity parameter” that characterizes the degree to

which the stellar spin axis Ŝ “follows” the precession of L̂ around Ĵ, defined as

A =

∣∣∣∣Ωps tk j
3

cos θsl

∣∣∣∣
' 58

k̄q,0m̄1m̄
1/2
01 R̄

3
0

k̄?m̄0m̄2

(
P?
5 d

)−1(
ain

0.1 AU

)−9/2(
aout,eff

10 AU

)3

.

(6.37)

In Eq. (6.37), k? = S/m0R
2
0Ω? describes the mass distribution of m0, which we

set to k? = 0.06 (Claret & Gimenez, 1992). See Section 6.2.1 for definitions and

canonical values of the other quantities in Eq. (6.37). Since P?, ain, aout,eff can all

span wide ranges, A can vary by many orders of magnitude among possible

6However, note that, although the expression for dLin/dt is negligible here, the oblate star
still causes additional pericenter precession of the orbit.
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types of hierarchical stellar triples.

Except for the sin 2I factor, A is of order the ratio of |Ωps| and |ΩL|, both

evaluated at e = 0. Note that the definition (6.37) differs from the adiabatic-

ity parameter in Storch et al. (2014) and Storch & Lai (2015), and in Anderson

et al. (2016). This “fuzziness” and multiple possible ways in defining such a

parameter arises because, from a theoretical point of view, the dynamical be-

havior of the spin axis relative to L̂ depends on two distinct (but related) pa-

rameters, as shown by Storch et al. (2017). These two parameters relate to the

LK-averaged stellar precession rate, and requires a knowledge of e(t) during the

LK cycle to evaluate. For this paper, our goal is to adopt an adiabaticity param-

eter that is convenient to evaluate for various triple systems, without requiring

prior knowledge of e(t).

If the adiabaticity parameter A is greater than a critical value Acrit, then the

system is always in the “adiabatic regime” and θsl will undergo little variation.

As a result, if the inner binary is formed with Ŝ and L̂ aligned, then the spin-

orbit angle θsl will remain small for all time. On the other hand, if A . Acrit,

large spin-orbit misalignment is possible. In Section 6.4, we undertake numeri-

cal integrations to determine the behavior of the spin-orbit misalignment angle

for different values of A , and identify the value of Acrit ' 3.
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6.4 Numerical Experiments

6.4.1 Setup and Computational Procedure

In this section, we present numerical integrations of the full secular equations

of motion of hierarchical stellar triples, and examine the maximum achieved

eccentricity of the inner binary (emax) and maximum spin-orbit angle (θsl,max)

over the integration timespan. We include both the quadrupole and octupole

terms for the inner and outer orbits, as well as the effects of SRFs on the inner

orbit (pericenter precession due to GR, and tidal and rotational distortion of

m0 and m1). The full equations of motion can be found in Liu et al. (2015).

In the absence of octupole (εoct = 0), the evolution of the outer orbit consists of

precession of the eccentricity vector eout (with eout constant), and precession and

nutation of L̂out around the fixed total angular momentum axis.

We simultaneously evolve the spin axis Ŝ of m0 due to the torque from m1,

as well as the spin axis of m1 due to the torque from m0 (Eq. [6.34]). We also

include the backreaction torques from both spins on the orbit. Each spin axis is

always placed initially parallel to the orbital axis (θsl,0 = 0). Both spin periods

are given the same initial value (P?), and held constant throughout the integra-

tion. The spin-behavior of m0 and m1 is qualitatively identical for comparable

mass binaries, and we only present results for m0 (but consider the evolution of

both spins in the numerical integrations).

Equal mass inner binaries (for which εoct = 0), and unequal mass inner bi-

naries are considered separately, in Sections 6.4.2 and 6.4.3 respectively. In each

case, we adopt a Monte Carlo approach, and generate a large number of sys-
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tems with the stellar spin periods and orbital parameters uniformly sampled in

the following ranges: P? = 1 − 30 days, ain = 0.1 − 1 AU, aout = (10 − 1000)ain,

eout = 0 − 0.9, and I0 = 0◦ − 180◦. We conduct separate experiments for a stel-

lar mass perturber (m2 = 1M�), and a brown dwarf perturber (m2 = 0.1M�).

Systems that satisfy any of the following conditions are discarded:

1. To ensure stability, systems that do not satisfy

aout

ain

> 2.8

(
1 +

m2

m01

)2/5
(1 + eout)

2/5

(1− eout)6/5

[
1− 0.3

I0

180◦

]
(6.38)

are rejected (Mardling & Aarseth, 2001).

2. In order to reduce the number of cases where the range of eccentricity

variation is low (or where LK oscillations are completely suppressed), sys-

tems with limiting eccentricities that satisfy elim < 0.3 are rejected, where

elim is determined by Eq. (6.26). As discussed in Section 6.2.3, for speci-

fied inner and outer binary properties, emax depends on the mutual incli-

nation I0, and elim is the maximum possible value of emax, occurring at a

critical inclination I0,lim. Due to the full range of inclinations considered

(I0 = 0◦ − 180◦), most systems will not be initialized with I0 ∼ I0,lim, and

will satisfy emax � elim. Requiring that elim ≥ 0.3 thus eliminates many

systems that will never undergo excursions to high eccentricity.

3. We do not include the effects of tidal dissipation in the inner binary. This is

justifiable because the focus of this paper is on binaries with pericenter dis-

tances large enough such that tidal dissipation has not occurred, thereby

preserving the initial semi-major axis of the system. However, some sys-

tems do achieve pericenter distances small enough such that changes in

both the orbital and spin angular momentum will occur. As discussed in
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Anderson et al. (2016), the tidal decay rate in a system undergoing LK os-

cillations (starting from e0 ' 0) is reduced by roughly a factor∼
√

1− e2
max

(see also Petrovich, 2015b, for a discussion of the orbital decay rate in LK

systems). The decay rate of the semi-major axis in a solar-type inner bi-

nary undergoing LK oscillations with maximum eccentricity emax can be

approximated by∣∣∣∣ 1

ain

dain

dt

∣∣∣∣
Tide,Lk

∼ 1.3× 10−10

yr

m̄1m̄01R̄
5
0

m̄0āin

×
(

∆tlag

0.1 s

)( aF
0.08 AU

)−7

,

(6.39)

(Anderson et al. 2016), where the equilibrium tide model was assumed

(Darwin, 1880; Singer, 1968; Alexander, 1973; Hut, 1981), ∆tlag is the (con-

stant) tidal lag time, and we have defined

aF ≡ ain(1− e2
max). (6.40)

The timescale for changing the spin rate of m0 due to tides is roughly∣∣∣∣ 1S dS

dt

∣∣∣∣
Tide,LK

∼ 3× 10−9

yr

m̄2
1m̄

1/2
01 R̄

3
0

m̄0ā2
in

(
P?

10 days

)
×
(

∆tlag

0.1 s

)(
aF

0.08AU

)−11/2

.

(6.41)

This also gives the timescale that tidal dissipation changes the spin-orbit

misalignment angle. Systems where this timescale is shorter than ∼ 109

years are affected by tides in terms of their stellar obliquities. We therefore

discard systems that achieved ain(1− e2
max) satisfying

ain(1− e2
max) < 0.08 AU. (6.42)

Although this numerical choice is somewhat arbitrary, we have experi-

mented with slightly higher and lower values, and do not find an ap-

preciable effect on our results. Note Eq. (6.42) corresponds to rejecting
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systems that achieve pericenter distances in the range 0.04 AU . ain(1 −

emax) . 0.08 AU. As a result, adopting the rejection condition in Eq. (6.42)

automatically removes systems that are tidally disrupted, i.e. those sys-

tems with pericenter distances less than the tidal disruption radius

a(1− emax) . 2.5R0

(
m01

m0

)1/3

' 0.01 AU. (6.43)

For each combination of (m0,m1) and m2, we generate an initial sample of

triples large enough such that, after applying the immediate rejection condi-

tions (i) and (ii), ∼ 2000 systems remain. We then integrate each system for a

timespan 103tk (in Section 6.4.2), and 30tk/εoct (in Section 6.4.3), and discard any

systems that satisfy Eq. (6.42). We record the maximum eccentricity (emax), and

the maximum spin-orbit angle (θsl,max) achieved over the entire integration.

6.4.2 Equal Mass Inner Binary

To start, we focus on equal mass inner binaries (m0 = m1 = 1M�), so that

εoct = 0. In this situation, the maximum achievable eccentricity is specified by

the algebraic expression Eq. (6.24).

After discarding systems that were expected to have undergone tidal dissi-

pation, we are left with 1779 and 1742 systems with a stellar and brown dwarf

outer companion respectively. These systems have initial angular momentum

ratios (see Eq. 6.6) in the range η ∼ 0.04 − 0.2 for the solar-mass tertiary, and

η ∼ 0.5 − 1.9 for the brown dwarf tertiary (m2 = 0.1M�). Therefore, triples

with stellar mass tertiaries can sometimes be qualitatively understood by the

test-particle approximation (η = 0), whereas the brown dwarf tertiary cannot
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(however, the dynamical effects of the inner orbit on the outer orbit are always

included in our numerical integrations, regardless of perturber mass).

As discussed in Section 6.3, the qualitative behavior of the spin axis of

m0, due to the forcing of m1 depends on the “adiabaticity parameter” A (see

Eq. [6.37]). When A is greater than a critical value Acrit, the evolution of the

spin-axis is strongly coupled to the orbital evolution, and the spin-orbit angle

θsl ' constant. Thus, for systems that begin with Ŝ and L̂ aligned, generating

spin-orbit misalignment requires that A . Acrit. Here we identify the numerical

value of Acrit.

Results of our numerical integrations are depicted in Fig. 6.7. Given the wide

ranges in orbital geometries and stellar spin rates sampled, the maximum eccen-

tricities range from emax ' 0− 0.96, and A varies by 5− 6 orders of magnitude.

The results in Fig. 6.7 can be qualitatively understood using the arguments pre-

sented in Section 3:

(i) For A . 0.1, the system is in the non-adiabatic regime (see Section 3), and

the precession rate of Ŝ around L̂in is slow compared to the precession of L̂in

around the total angular momentum axis Ĵ. As a result, Ŝ effectively precesses

around Ĵ. If any nutation of L̂in relative to Ĵ is neglected, the maximum possible

spin-orbit misalignment is approximately ∼ 2I0. We have confirmed that for

A . 0.1, θsl,max ' 2I0.

(ii) For 0.1 . A . 3, the evolution of the system is trans-adiabatic (and often

chaotic), and θsl,max can momentarily reach 180◦.

(iii) Systems that satisfy A & 3 all maintain low spin-orbit misalignment for

the entire integration timespan (with θsl,max . 30◦). This is in spite of the fact that
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Figure 6.7: Maximum spin-orbit angle θsl and eccentricity emax of the inner bi-
nary as a function of the adiabaticity parameter, defined in Eq. (6.37). The
results are obtained by numerical integrations of systems with an equal mass
inner binary (m0 = m1 = 1M�), and other parameters randomly sampled
as follows: P? = 1 − 30 days, ain = 0.1 − 1 AU, aout = (10 − 1000)ain,
eout = 0−0.9, and I0 = 0◦−180◦. Lefthand panels show results for a stellar mass
(m2 = 1M�) tertiary, and righthand panels show results for a brown-dwarf ter-
tiary (m2 = 0.1M�). We integrated each system for a period of 103tk. Systems
with A & 3 maintain low spin-orbit misalignment for the entire integration
span (top panels), despite undergoing substantial eccentricity variation (bottom
panels).

many of these systems reached sufficiently high eccentricities (see the bottom

panels of Fig. 6.7) such that the change in orbital inclination is also large. Note

that the transition from trans-adiabatic to fully adiabatic evolution, in terms of

A , occurs abruptly (see also Storch et al., 2014; Storch & Lai, 2015).

We conclude from these experiments that a reasonable estimate is Acrit ' 3.

In order to for substantial spin-orbit misalignment to be generated, the inner
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Figure 6.8: Orbital parameters aout,eff = aout

√
1− e2

out versus ain for the same
sets of triples as in Fig. 6.7. The colors indicate the value of θsl,max (top panels),
and emax (bottom panels). We plot curves of constant A = 3 for reference (see
Eq. [6.37]), with two stellar spin periods selected (P? = 1, 30 days, grey curves
from bottom to top).

and outer binaries must have parameters (i.e. P?, ain, aout,eff ; see Eq. [6.37]) such

that A . 3 is satisfied.

Figure 6.8 depicts the results of the same experiments as shown in Fig. 6.7, in

terms of the parameter space (ain, aout,eff) that we have sampled, with θsl,max and

emax indicated by the color. For a fixed ain and P?, it is clear that in order to gen-

erate substantial spin-orbit misalignment, the perturber must have a sufficiently

small effective separation aout,eff so that the orbital precession is fast compared to
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the spin axis precession. Indeed, from Eq. (6.37), the condition A . 3 translates

into
aout,eff

m̄
1/3
2

. 3.7 AU

(
m̄0

m̄1m̄
1/2
01 R̄

3
0

)1/3(
ain

0.1 AU

)3/2(
P?
5 d

)1/3

. (6.44)

6.4.3 Unequal Mass Inner Binary: Octupole Results

Next we consider unequal mass inner binaries, with m0 = 1M� and m1 =

0.5M�. If the octupole potential of the tertiary companion is non-vanishing, i.e.

if εoct 6= 0 (which occurs if m0 6= m1 and eout 6= 0), the eccentricity of the inner

binary can undergo excursions to more extreme values, and under some con-

ditions the orbital inclination can flip (cross 90◦). The orbital dynamics can be

considerably more complicated compared to systems with only the quadrupole

potential included. Here, we examine whether the results of Section 6.4.2 re-

main valid for non-zero εoct.

First, we show how the maximum eccentricity is affected. With εoct 6= 0,

emax is no longer specified by Eq. (6.24), and determining emax always requires

full numerical integrations. Liu et al. (2015) showed that when considering sys-

tems with octupole and SRFs, the maximum achieved eccentricity emax depends

on both I0 and εoct, but that emax does not exceed the quadrupole limiting ec-

centricity elim, as determined by Eq. (6.26). In other words, even with octupole

included, emax ≤ elim. We have confirmed this finding through numerical in-

tegrations of the full secular equations of motion (including SRFs). To demon-

strate, Fig. 6.9 shows the maximum achieved eccentricity over the integration

timespan versus the initial inclination (see also Liu et al., 2015, for similar re-

sults), for the two fiducial values of the perturber mass. In these examples, the
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inner binary orbital period is fixed at Pin = 15 days, and the orbital parameters

chosen so that εoct = 0.01, and aout,eff/m̄
1/3
2 ' 6.28 AU. We confirm that emax can

have a complicated dependence on I0, especially if η ∼ 1 (bottom panel). In

Fig. 6.9, emax at I0 = 0 can be calculated using the result of Section 2.4. The spike

in the lower panel (around I0 ∼ 30◦) may be the result of a secular resonance,

but a detailed characterization is beyond the scope of this paper. In general, the

degree of deviation of emax (with octupole) from the quadrupole prediction de-

pends on εoct, as well as on the relative “strengths” of the SRFs (εGR, and εTide) 7.

We do not attempt to characterize this behavior here (see Liu et al. 2015 for such

a characterization in the test-mass limit [m1 � m0,m2]), and simply present

Fig. 6.9 as illustrative examples. Despite the complicated dependence of emax on

inclination, Fig. 6.9 shows that emax does not exceed elim.

To check whether this result is robust across a wide variety of systems, we

repeat the previous Monte Carlo experiment conducted in Section 6.4.2 with

m0 = 1M� and m1 = 0.5M�. All other parameters are sampled identically, with

the additional selection criterion that εoct > 0.001. We integrate each system for

∼ 30tk/εoct, i.e. ∼ 30 octupole LK timescales. In Fig. 6.10 we plot emax/elim versus

εoct, where emax is the maximum eccentricity achieved over the entire numeri-

cal integration timespan, while elim is calculated from Eq. (6.26). Inspection of

Fig. 6.10 reveals that emax ≤ elim. As a result, while knowledge of emax for an ar-

bitrary inclination require a full numerical integration, the algebraic expression

for the upper limit on emax (Eq. [6.26]) remains valid for systems with non-zero

octupole terms.

Second, we examine whether the adiabaticity parameter A remains a useful

7Although the effects of SRFs generally suppress emax, under some circumstances, including
the effects of GR precession can give rise to eccentricity excitation, yielding emax that is much
higher relative to the case without GR precession included (Ford et al., 2000; Naoz et al., 2013b).
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Figure 6.9: Maximum eccentricity emax achieved over the integration timespan
(black curves), compared to the algebraically-determined quadrupole estimate
(red curves) from Eq. (6.24). The numerical integrations include quadrupole
+ octupole contributions, stellar spin-orbit coupling, and all SRFs. Results are
depicted for a stellar mass perturber (top panel), and a brown-dwarf perturber
(bottom panel). To illustrate the role of the angular momentum ratio η in deter-
mining emax, we have fixed εoct = 0.01, as well as the quantity aout,eff/m̄

1/3
2 ' 6.28

AU for both panels. The top panels have aout ' 10.3 AU, eout ' 0.79, and the
bottom panels have aout ' 3.4 AU, eout ' 0.51. Other parameters (identical for
both panels) are: m0 = 1M�, m1 = 0.5M�, Porb = 15 days, P∗ = 10 days, ωin = 0,
Ωin = 0, ωout = 0.
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Figure 6.11: Same experiment as depicted in Fig. 6.7, except that the inner binary
has unequal mass (m0 = 1M�, m1 = 0.5M�), so that εoct 6= 0 (shown in the
bottom panel). Same set of simulations as in Fig. 6.10. As found previously (for
εoct = 0), systems with A & 3 all maintain low spin-orbit misalignment for the
entire integration.

quantity in predicting the ability to generate spin-orbit misalignment. The re-

sults are shown in Fig. 6.11 (compare with Fig. 6.7). We find again that systems

with A > Acrit ' 3 all maintain low spin-orbit misalignment, while systems

with A . 3 do not. A possible reason is that systems with the largest εoct tend

to have A . 3 (due to the strong dependence of A on aout,eff), and therefore lie

in the non-adiabatic (low A ) regime. As a result, octupole-level dynamics do

not affect the existence or numerical value of Acrit, because the octupole contri-

bution for systems near Acrit is negligible.
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To summarize Sections 6.4.2 and 6.4.3: By conducting a series of numeri-

cal integrations, with orbital parameters and stellar spin periods sampled over

wide ranges, and considering both a solar-mass and brown dwarf tertiary com-

panion, we have identified a condition necessary for generating substantial

spin-orbit misalignment (θsl & 30◦) of the inner binary. The orbital geometries

of the inner and outer binaries (ain, aout,eff), and the stellar spin period (P?) must

satisfy A . 3, where A is given in Eq. (6.37). This result also holds for εoct 6= 0.

We have also shown that the maximum achieved eccentricity of the inner bi-

nary in systems with octupole never exceeds the quadrupole limiting value, as

determined by the algebraic expression in Eq. (6.26). Therefore, the analytical

results in Section 2.3, constraining the maximum perturber distance capable of

raising the eccentricity from e ∼ 0 to eobs (through LK oscillations), remain valid

for εoct 6= 0.

Taken together, these findings shed insight into the dynamical behavior of

hierarchical stellar triples, without undertaking full numerical integrations.

6.5 Application: DI Herculis

As an application of the results presented in previous sections, we consider the

eclipsing binary DI Herculis. DI Herculis consists of two B stars, with masses

m0 = 5.15M� and m1 = 4.52M�, orbital period P ' 10.55 days, and eccentric-

ity e ' 0.49 (Popper, 1982). DI Herculis has been an object of interest, due to

an observed pericenter precession rate too low compared with predicted rate

due to general relativity (Martynov & Khaliullin, 1980). Both the primary and

secondary components of this system were recently confirmed to have signif-
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icant projected spin-orbit misalignments (Albrecht et al., 2009), leading to an

additional source of precession (with the opposite direction compared to GR),

thereby resolving the anomalously low observed rate. The projected obliquity

of the primary is λpri ' 72◦ and that of the secondary is λsec ' −84◦. Here,

we consider the possibility that the large obliquities and eccentricity arose from

secular perturbations from an undetected tertiary companion, and provide con-

straints that the hypothetical companion must satisfy.

If a tertiary companion is responsible for raising the eccentricity from ∼ 0 to

the observed value eobs ' 0.5, then the LK maximum eccentricity must satisfy

emax & 0.5. Considering ranges of inclinations and semi-major axes for hypo-

thetical perturbers, the colormap in Fig. 6.12 shows the analytically-determined

maximum eccentricity, calculated using the procedure described in Section 2.

To ensure that the analytic treatment properly captures the dynamics of DI Her-

culis, we have also undertaken full numerical integrations, depicted as solid

circles. In the analytic determination of emax (Section 2), we have considered the

SRF contributions from GR, along with tidal and rotation distortion of both m0

and m1. In contrast to solar-type stars, effects of rotational distortion are impor-

tant in both members of DI Herculis, because the large radii and rapid rotation

rates lead to large rotation-induced quadrupole moments. Recall that rotational

distortion may only be incorporated in the analytic treatment of the LK maxi-

mum eccentricity in an approximate manner, and in Section 2 alignment of the

rotation and orbital axes was assumed. A precise determination of emax thus

requires full numerical integrations over a large number of LK cycles. Despite

the approximation of aligned spin and orbital axes, the analytic treatment is in

near perfect agreement with results from numerical integrations.
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Inspecting Fig. 6.12, a solar-mass perturber must be located within∼ 12 AU,

with a wide range of possible inclinations. In contrast, the required properties

of a brown dwarf perturber are much more restrictive. A brown dwarf per-

turber must be located within ∼ 5 AU in a retrograde orbit. Different choices

for the outer binary’s eccentricity will modify these constraints. However, given

that m0 ' m1, the DI Herculis system is unlikely to be significantly affected by

octupole contributions, so the perturber’s eccentricity can be absorbed into the

definition of the “effective” semi-major axis aout,eff = aout

√
1− e2

out (unless the

angular momentum ratio satisfies η & 1).

If a tertiary companion is responsible for raising the spin-orbit angle of ei-

ther member of DI Herculis from ∼ 0 to the observed values, the adiabiaticity

parameter must satisfy A . 3 (see Sections 3 and 4, and Eq. [6.37]). The rapid

rotation rates of both stars (v sin i > 100 km s−1), combined with the large stel-

lar radii, implies that a perturber must be extremely close and/or massive to

achieve A . 3. Figure 6.13 depicts the combinations of m2 and aout,eff that

lead to A < 3 for the primary member (shaded region). Note that we have

assumed a primary stellar spin period P? = 1.25 days – this rapid rotation rate

is consistent with the observed v sin i, and the estimated value by Philippov &

Rafikov (2013) using gravity darkening. Inspecting Fig. 6.13, we see that a per-

turber with m2 ∼ 1M� must have an effective separation aout,eff . 3 AU, and if

m2 ∼ 0.1M�, aout,eff . 1 AU. Note that such triple systems are only marginally

stable – the Mardling & Aarseth (2001) stability criterion (see Eq. 6.38) yields a

minimum separation of aout ∼ 1 AU.

The requirement that a solar-mass perturber be located within ∼ 3 AU in

order to generate the observed spin-orbit misalignment may be problematic,
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given that no additional bodies have been observed. A low-mass (e.g. brown

dwarf) perturber is much more compelling than a solar-mass perturber, because

it is more likely to have hitherto escaped detection. However, the requirement

that it be located within ∼ 1 AU) would place it uncomfortably close to the

stability limit.

To summarize: we have considered the possibility that the observed eccen-

tricity and/or spin-orbit misalignment in the DI Herculis system result from

secular perturbations from a tertiary companion. The perturber must be lo-

cated within ∼ 5− 15 AU to generate the observed eccentricity. The constraints

on based on the obliquity are much more stringent, and the perturber must be

located within ∼ 1 − 3 AU (depending on perturber mass), very close to the

stability limit.

6.6 Conclusion

6.6.1 Summary of Key Results

This paper has examined the secular dynamics of hierarchical stellar triples,

with the goal of identifying the requirements for the tertiary body to induce

spin-orbit misalignment and/or eccentricity in the inner binary through Lidov-

Kozai cycles in concert with stellar spin-orbit coupling. We have considered the

orbital evolution of both the inner and outer binaries, combined with the dy-

namics of mutual spin-orbit nodal precession, as well as pericenter precession

from various short range-forces (SRFs), such as general relativity and stellar

tides. The results of this paper allow constraints to be placed on hidden tertiary
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Figure 6.12: Similar to Fig. 6.4, but applied to the DI Herculis system, which
has an inner binary with m0 ' 5.15M� m1 ' 4.52M�, eccentricity eobs ∼ 0.5,
Porb ' 10.55 days, and estimated spin periods of P? ∼ 1 day. In order for the
eccentricity of DI Herculis to have been increased from ∼ 0 to 0.5 by LK cycles
from a tertiary companion, the LK maximum eccentricity must satisfy emax ≥
eobs ' 0.5. We show results for a stellar mass and brown dwarf perturber, as
labeled, and have set eout = 0 in this example. The colored circles depict the
results of numerical integrations of the full equations of motion, as discussed in
Section 6.4. The colormap depicts the analytic estimate of emax as discussed in
Sections 6.2.2 and 6.2.3. In order to produce the observed eccentricity, a brown-
dwarf perturber must be in a retrograde orbit.
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out versus mass
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misalignment, the inner and outer binaries must satisfy A . 3, as indicated
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companions in stellar binaries that exhibit spin-orbit misalignment or eccentric-

ity. The key results of this paper are:

•We derive new analytic expressions for the maximum eccentricity achieved

by the inner binary (Eq. [6.24]) and the “LK window” for eccentricity excitation

(see Eqs. [6.19], [6.23], and Fig. 6.1) due to the secular quadrupolar forcing of

an external companion. The quadrupole approximation is exact when the inner

binary has equal masses, or when the outer binary orbit is circular. Note that

these calculations assume an initial inner binary eccentricity e0 ' 0. Our expres-

sions for emax and the LK window are valid for general masses of the triples and

include the effects of SRFs. Our analysis generalizes previous work, which was

restricted to small mass ratios and/or neglect SRFs. These results shed light on

the dynamical behaviors of hierarchical triples with a wide range of parameters,

without undertaking full numerical integrations.

• For an observed binary system with eccentricity eobs, constraints on unseen

tertiary companions can be made, by requiring emax ≥ eobs, assuming the inner

binary has an initial eccentricity e0 ' 0. Although the assumption e0 ' 0 may

not always hold (since the inner binary may form with a range of eccentricities),

this constraint (eobs ≤ emax) nonetheless provides useful information on the re-

quired masses and separation of an undetected tertiary companion (see Section

6.2.4). See Appendix B for a brief consideration of e0 6= 0.

• In cases where the octupole contribution is important (when m0 6= m1 and

eout 6= 0), we carry out numerical experiments to determine emax (see Figs. 6.9

and 6.10). As first noted by Liu et al. (2015), and confirmed in this paper under

general conditions (e.g., arbitrary mass ratios for the hierarchical triples), the

maximum eccentricity (with octupole) never exceeds the analytic quadrupole
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limiting eccentricity elim (see Section 6.2.3, Eq. [6.26]). Without octupole this

limiting eccentricity is only achieved (emax = elim) at a specific value of the initial

inclination I0,lim ≥ 90◦ (see Eq. [6.25]), but including octupole allows emax = elim

to be realized for a wider range of inclinations. Since emax ≤ elim, constraints can

be placed on the required perturber properties (m2, aout, eout) needed to generate

eccentricity even in systems with octupole contributions, without undertaking

numerical integrations.

• From numerical integration of the full secular equations of motion (includ-

ing the dynamics of the orbits and stellar spins) for a variety of triples and stel-

lar parameters, we have identified a robust, necessary condition for generating

spin-orbit misalignment in the inner binary due to perturbations from a tertiary

companion: Large (& 30◦) misalignment can be generated only if the stellar

masses, spin period, and the orbital parameters of the triples are such that the

“adiabaticity parameter” A , defined by Eq. (6.37), satisfies A . 3 (see Figs. 6.7

and 6.11).

Physically, A is the ratio of the precession rate of the stellar spin (driven

by the secondary) and the orbital precession rate of the inner binary (driven by

the tertiary), evaluated at inner binary zero eccentricity. This finding (A . 3

for producing misalignment) holds across wide ranges of orbital architectures

and stellar spin periods. Although theoretical work on spin-orbit dynamics in

binaries undergoing LK oscillations shows that the dynamics of the spin axis

depends on more than a single parameter (Storch et al., 2017), we find em-

pirically that A . 3 is highly effective in predicting whether large spin-orbit

misalignment will occur, and has the advantage that it is easily evaluated for

observed binaries. For a specified inner binary separation, A . 3 translates
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into the requirement that the outer binary must have a small effective separa-

tion aout,eff = aout

√
1− e2

out, and/or the stellar rotation period must be short (see

Fig. 6.8). Although the main focus of this paper has been on inclined tertiary

companions, we note that nearly coplanar tertiaries can also increase spin-orbit

misalignment and eccentricity, provided that the outer orbit is sufficiently ec-

centric, and the adiabaticity parameter satisfies A ∼ 3.

• In Section 5 we apply our general results to the eclipsing binary system

DI Herculis, and identify the properties that an undetected tertiary companion

must satisfy, in order to be responsible for the observed eccentricity and spin-

orbit misalignments.

6.6.2 Discussion

As noted in Section 1, this paper has neglected the effects of tidal dissipation

in the inner binary. Therefore, when applying our results (analytic expressions

and various constraints) to observed binaries, it is important to make sure that

the system under consideration has a sufficiently large pericenter distance so

that its eccentricity and spin-orbit misalignment angle have not been affected

by tidal dissipation within the lifetime of the system.

Another physical effect ignored in this paper is stellar spin-down by mag-

netic braking. Our pevious works (Storch et al., 2014; Anderson et al., 2016)

have shown that stellar spin-down can significantly influence the final spin-

orbit mislaignments of hot Jupiter systems formed through Lidov-Kozai migra-

tion. Although the integration timespans considered in this paper have been

sufficiently short so that P? = constant is a valid approximation, the decrease in
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the stellar spin rate over Gyr timescales could be significant (depending on stel-

lar type), and can reduce A by ∼ 10 for solar-mass stars. As stellar spindown

takes place, the adiabaticity parameter may cross A ∼ 3, so that substantial

misalignment is generated only late in the binary’s evolution. As a result, stel-

lar triples where tidal decay does not occur in the inner binary may exhibit an

increase in spin-orbit misalignment with stellar age.

As noted above, the analytic results presented in this paper are valid for hi-

erarchical triples with arbitrary masses. Thus, they also have applications in ex-

oplanetary systems consisting of two well-separated planets. While numerous

planets within ∼ 1 AU of their host stars have been discovered from both tran-

sit and radial velocity searches, detection of more distant planets has proceeded

more slowly. Many observed planets within 1 AU have substantial eccentric-

ities, and a possible explanation is secular interactions with additional unde-

tected distant planets. In systems containing an eccentric planet, the method

developed in this paper can be used to place constraints on additional external

planetary companions. We plan to study these issues in a future paper.
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CHAPTER 7

SPIN-ORBIT MISALIGNMENTS IN STELLAR BINARIES WITH

CIRCUMBINARY DISKS: APPLICATION TO DI HERCULIS

7.1 Introduction

A natural expectation of stellar binary formation is an orbital axis that is aligned

with the stellar spin axes, reflecting the rotation axis of the proto-stellar cloud.

Indeed, stellar binaries with semi-major axes less than about 40 AU tend to be

aligned with their orbital axes, whereas wider binaries are more randomly ori-

ented (Hale, 1994). As a result, the existence of several close (< 1 AU) stellar

binaries with significantly misaligned sky-projected spin and orbital axes is of

great interest. Such misalignments may suggest a slight anomaly in the usual

star formation process, or post-formation dynamical interactions. This paper

focuses on the latter process.

One of the most well known spin-orbit misaligned stellar binaries is DI Her-

culis, a pair of B-type stars with a 10.5 day orbital period and sky-projected

obliquities of 72◦ and−84◦ for the primary and secondary respectively (Albrecht

et al., 2009). In this paper, we suggest a possible mechanism for the nearly per-

pendicular spins of DI Herculis, due to the presence of a circumbinary disk.

An inclined circumbinary disk introduces nodal precession of the binary orbital

axis. Meanwhile, the oblate stellar bodies experience torques, causing preces-

sion of the spin axes around the binary orbital axis. As the circumbinary disk

This chapter is adapted from Anderson & Lai (2019), in preparation.
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mass decreases due to a combination of winds and accretion, a secular reso-

nance may be encountered, in which the spin axis precession is comparable to

the binary orbital axis precession. The spin axes may become captured into

Cassini states (equilibrium states), causing the obliquities to approach 90◦, as

the disk mass becomes negligible.

This paper is organized as follows: In Section 7.2 we present the secular

equations of motion for the star-binary-disk system, encapsulating the pre-

cession of the spin, binary, and disk angular momentum axes due to mutual

torques, and review Cassini states. In Section 7.3 we discuss how allowing mass

accretion onto the binary may under some circumstances suppress obliquity

growth.

7.2 Obliquity Excitation in Stellar Binaries

7.2.1 Torques and Mutual Precession

We consider an equal-mass binary with total mass Mb = m0 + m1, semi-major

axis ab and angular momentum Lb = µb

√
GMbab. An inclined circumbinary

disk has mass Md, and inner and outer radii rin and rout, with ab < rin < rout.

Assuming the disk has a density profile Σ(r) = Σin(rin/r), the disk has mass Md

and angular momentum Ld, with

Md = 2πΣinrin(rout − rin) (7.1)

and

Ld =
2Md

√
GMbrout

3(rout − rin)

[
rout −

√
r3

in

rout

]
. (7.2)

253



We allow the disk mass to decrease with time according to

Md(t) =
Md,0

(1 + t/tdisk)
, (7.3)

where tdisk is a free parameter. The total mass-loss rate of the disk is therefore

Ṁd = − Md,0

tdisk(1 + t/tdisk)2
. (7.4)

Due to the binary-disk inclination, the unit vectors l̂b = Lb/Lb and l̂d =

Ld/Ld undergo mutual precession around their total angular momentum axis ĵ,

defined by J = Lb + Ld. The binary precesses around l̂b at a rate ωbd, with

ωbd =
3Md

8Mb

a3
b

r2
in(rout − rin)

[
1− r2

in

r2
out

]
nb, (7.5)

where nb =
√
GMb/a3

b . The precession rate of l̂d around l̂b is denoted as ωdb =

(Lb/Ld)ωbd. The precession frequency of l̂b around ĵ has the rate

ωbj =

(
1 + 2

Lb
Ld

cos I +
L2
b

L2
d

)1/2

ωbd (7.6)

' 9

16

µb
Mb

(
ab
rin

)7/2(
rin

rout

)3/2

nb for rout � rin, Lb � Ld.

Due to stellar oblateness, the spin axis of m0 (ŝ = S/S) experiences a torque

from m1
2, and precesses around l̂b with frequency

ωsb =
3kq
2k?

m1

m0

(
R0

ab

)3

Ω?. (7.7)

The binary orbit experiences a backreaction torque from m0, and precessions

with much lower frequency ωbs = (S/Lb)ωsb.

The secular equations of motion for the binary, disk, and spin unit vectors,

2Throughout this paper, we consider only the torque on the oblate m0; identical expressions
for m1 are obtained by switching the indices “0” and “1”.
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encapsulating the precessional dynamics are thus

dŝ

dt
= ωsb(ŝ · l̂b)(ŝ× l̂b),

dl̂b
dt

= ωbd(l̂b · l̂d)(l̂b × l̂d) + ωbs(ŝ · l̂b)(l̂b × ŝ),

dl̂d
dt

= ωdb(l̂b · l̂d)(l̂d × l̂b) (7.8)

7.2.2 Cassini States

Cassini states are equilibrium states of the vector trio ŝ, l̂b and l̂d. Dissipative

processes such as tides may drive the system to an equilibrium state. We orient

l̂b along the z-axis and place the disk axis in the x̂-ẑ plane. The unit vectors l̂d

and ŝ have the coordinates

l̂d = sin θbdx̂+ cos θbdẑ (7.9)

ŝ = = sin θsb cosφx̂+ sin θsb sinφŷ + cos θsbẑ, (7.10)

where the angles are defined through cos θsb = ŝ · l̂b and cos θbd = l̂b · l̂d, and φ

is the phase of ŝ relative to l̂b. The equilibrium states occur when the relative

orientations of all three axes are fixed (e.g. Boué & Laskar, 2006; Fabrycky et al.,

2007; Correia et al., 2016; Anderson, & Lai, 2018), and are given by

[
ŝ · (l̂b × l̂d)

]
= 0

d

dt

[
ŝ · (l̂b × l̂d)

]
= 0. (7.11)
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The first condition implies that φ = 0, π. The second condition specifies the

Cassini state angles, which becomes (Anderson, & Lai, 2018)

ωbd

ωsb

cos θbd

[
cos θbd cos(θsb − θbd)− cos θsb

]
+
S

Lb
cos θsb

[
cos θbd − cos(θsb − θbd)

]
− sin θbd sin θsb

[
cos θsb −

Lbωbd

Ldωsb

cos θbd

]
. (7.12)

Given values of the angular momentum ratios and either θsb or θbd, equation

(7.12) may be numerically solved to calculate the Cassini states. Alternatively,

the Cassini states can be thought of as an ordered pair of the obliquity and

binary-disk inclination (θsb, θbd), which depends on the total angular moment

of the system and precession frequencies. Following Correia (2015), we define

the angular momentum constant K0:

K0 = SLb cos θsb + SLd cos θsd + LbLd cos θbd =
1

2

(
K2 − S2 − L2

b − L2
d

)
. (7.13)

where K = S + Lb + Ld. Since

cos θsd = sin θsb sin θbd + cos θsb cos θbd, (7.14)

K0 = K0(θsb, θbd, S, Lb, Ld), and is a quadratic in cos θbd, which can be solved as

(Correia et al. (2016), equations 78-80)

cos θbd =
Z(Lb + S cos θsb)± S sin θsb

√
1− Z2

G
, (7.15)

where

Z =
K0 − SLb cos θsb

LdG
(7.16)

G =
√

(Lb + S cos θsb)2 + S2 sin2 θsb = (S + Lb)
2 (7.17)

Together, equations (7.12) and (7.15) specify the ordered pair of Cassini state

angles (θsb, θbd) as a function of ωsb, ωbd, S, Lb, Ld, K0, and can be solved using

numerical root-finding methods.
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The number of Cassini states depends on several factors: The precession

rates ωsb and ωbd, the angular momentum ratios S/Lb, Lb/Ld, and the binary-

disk inclination. In the classical Cassini state problem (with S/Lb = 0), four

states exist, two of which are stable, denoted as (θ1, I1) and (θ2, I2). In the limit

of strong spin-orbit coupling (ωbd/ωsb � 1), θ1 → 0 and θ2 → π/2. In the limit of

weak spin-orbit coupling (ωbd/ωsb � 1) only one stable state exists (θ2, I2), with

θ2 → I2. Cassini state 1 ceases to exist when the ratio ωbd/ωsb is of order unity.

Beginning with a sufficiently massive disk, the spin and orbit will initially

be weakly coupled, so that the system may be driven towards the only stable

Cassini state (θ2, I2). As the disk mass decreases, the obliquity and binary-disk

inclination will track (θ2, I2) as the ratio ωbd/ωsb decreases. Following the dis-

persal of the disk, the obliquity will remain at a fixed value, corresponding to

the asymptotic value of θ2, in the limit of ωbd/ωsb � 1.

In order for the system to become captured into Cassini state 2 without fine-

tuning, the star-binary system must initially be sufficiently weakly coupled, so

that Cassini state 1 does not exist. As a result, an approximate requirement is

ωbd/ωsb & 1 initially. This places constraints on the necessary disk properties,

with a minimum disk mass (in units of binary mass) given by

Md

Mb

& 4
kq
k?

Ω0

nb

R3
0r

2
inrout

a6
b

. (7.18)

7.2.3 Relevant Timescales

We will fix the binary properties to values appropriate for a DI Herculis type

system, choosing for simplicity m0 = m1 = 5M�, R0 = 2.5R�, P? = 1.25 day,

and ab = 0.2 AU.
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Figure 7.1 shows the precession frequencies ωsb and ωbd as a function of

Md/Mb, for the binary properties as specified above, fixed rin = 2ab and var-

ious values of rout/rin. We see the condition ωbd/ωsb & 1 is satisfied for disk

masses initially of order the binary mass and a range of rout/rin. In the follow-

ing examples and numerical integrations in this paper, we will fix the canonical

disk properties to rin = 2ab, rout = 30rin, and initial mass Md,0 = 0.5Mb = 5M�.

Fig. 7.2 illustrates the system properties and relevant timescales for the bi-

nary and disk parameters stated previously as a function of time, in units of the

disk dispersal timescales tdisk. Inspecting the lefthand panel, the disk angular

momentum is initially greater than the binary angular momentum by a factor

of ∼ 10. As the disk dissipates, the ratio Lb/Ld increases and reaches unity af-

ter a time 10tdisk has elapsed. The spin angular momentum is much less than

the binary angular momentum. We note that the assumption of a fixed disk

profile may be an oversimplification at times beyond ∼ a few tdisk. However, a

more complex model is not justified in this situation, given uncertainties on the

details of disk dispersal.

The righthand panel of Fig. 7.2 shows the relevant precession timescales.

Initially, the binary precession frequency around the disk axis is greater than

the stellar spin precession frequency around the binary axis (ωbd/ωsb > 1), so

that the spin is weakly coupled to the orbit. When the disk mass becomes very

small, the spin is very strongly coupled to the binary orbit (ωbd/ωsb � 1). Due

to the backreaction torque on the binary orbit from the oblate star, the disk axis

precesses with a very low frequency ωbs = (S/Lb)ωsb � ωsb.

In order for the system to be permanantly captured into Cassini state 2, the

mass loss must be “adiabatic,” with Md/Ṁd sufficiently slow. Inspecting the
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Figure 7.1: Relevant frequencies as a function of disk mass in units of the bi-
nary mass. The binary properties of been chosen to be similar to the observed
properties of DI Herculis, with m0 = m1 = 5M�, R0 = R1 = 2.5R�, ab = 0.2
AU, P? = 1.25 days. The solid red line indicates the precession frequency of ŝ
due to l̂b (ωsb) and the dash-dot line indicates the precession of l̂b due to ŝ (ωbs).
The three dashed lines indicate ωbd, the precession frequency of l̂b due to l̂d, as-
suming an inner disk edge rin = 2ab and varying values of rout/rin, as labeled.
For initial disk masses of order the binary mass, ωbd/ωsb & 1 initially, so that the
system may be captured into Cassini state 2.
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Figure 7.2: Relevant ratios and precession frequencies. The binary parameters
shown here are the same as in Fig. 7.1 as well as all numerical integrations
shown in this paper, and the disk properties are rin = 2ab, rout = 30rin, and
initial mass Md,0 = 0.5Mb = 5M�.

precession frequencies in the right panel of Fig. 7.2 shows that the disk mass

loss timescale will be the slowest timescale in the problem for tdisk . 104 yrs.

7.2.4 Importance of Spin Feedback

Next, we conduct numerical integrations of a binary-disk system with the

canonical disk and binary parameters (as listed in Fig. 7.2), with a disk dis-

persal timescale tdisk = 105 yr. Since S/Lb � 1, we will begin by neglecting the

spin-feedback on the binary orbit (setting S/Lb = 0 in the equations of motion,

so that ωbs = 0). The left panels of Fig. 7.3 shows examples starting with an ini-

tial binary-disk inclinations θbd,0 = 2◦. Compare with the timescales and ratios

shown in Fig. 7.2. The system is quickly captured into libration around Cassini

state 2, and steadily tracks the state to a large final obliquity ∼ 70◦. The binary-

disk inclination remains constant, due to the fact that the binary experiences no

260



torque from the star, and simply precesses due to the disk. Note that this exam-

ple has been integrated for a time 10tdisk. The obliquity may continue to evolve

slightly at later times and may eventually approach 90◦, but the assumption of a

fixed disk profile is almost certainly invalid at this point, and we do not attempt

to precisely predict the final obliquity.

The right-hand panels of Fig. 7.3 show the same system, but including the

spin feedback on the binary orbit (S/Lb 6= 0, so that ωbs 6= 0). Including the

spin feedback has a profound effect on the Cassini state ordered pair (θsb, θbd),

causing the binary-disk inclination to damp to less than 0.5◦ and the obliquity

to settle at a final value of 31◦. Thus, the spin feedback on the binary cannot

be ignored for these parameters and initial conditions, in spite of the fact that

S/Lb � 1.

Figure 7.4 presents the final obliquity and inclination for a set of numeri-

cal integrations conducted identical to the integrations shown in Fig. 7.3, but

varying the initial binary-disk inclination in the range 1◦ − 10◦. We compare

the results with and without spin feedback included. For initial inclinations

θbd,0 . 4.5◦, the spin-feedback dramatically reduces the binary-disk inclination,

leading to a reduced final obliquity.

In summary, we have demonstrated that at small inclinations, the backre-

action torque of the oblate star on the orbit plays an essential role in the spin-

binary-disk dynamics, leading to damping of the mutual inclination, and a final

obliquity that can be far less than 90◦.

261



0
10
20
30
40
50
60
70

θ s
b
,
θ 2

 (
◦
)

S/Lb =0

θsb

θ2

0 2 4 6 8 10

t/tdisk

0.0

0.5

1.0

1.5

2.0

θ b
d
,
I 2

 (
◦
)

θbd

I2

S/Lb 0

0 2 4 6 8 10

t/tdisk

Figure 7.3: Example of obliquity and inclination evolution (θsb and θbd) for the
canonical parameters (same as in Fig. 7.2). The results from the integration are
shown in black. The Cassini state 2 angles (θ2, I2) are calculated analytically
from the total angular momentum K0 obtained from the numerical integration,
and are shown in cyan. The left panels show an example with the spin feedback
neglected (setting S/Lb = 0 in the equations of motion), and the right panels
show the same example with the spin feedback included (S/Lb 6= 0). Despite
the fact that S/Lb � 1 (see Fig. 7.2), the spin feedback on the orbit has a dramatic
effect, causing the θbd to damp to nearly zero, and the final obliquity to settle to
a value far below 90◦.

7.3 Effects of Accretion onto the Binary

We now allow the possibility for accretion onto the binary. The total mass accre-

tion onto the binary is specified as

Ṁacc,b = fbṀd, (7.19)

with fb a free parameter between 0− 1. The mass accretion rate onto each of the

stars is

Ṁacc,s =
fsfb

2
Ṁd, (7.20)
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Figure 7.4: “Final” obliquity (top panel) and binary-disk inclination (bottom
panel) after the disk has lost the majority of it’s initial mass (when t = 10tdisk).
The solid lines show results of numerical integrations with the spin feedback
on the orbit included (finite S/Lb, and the dashed lines show results with spin
feedback neglected, by setting S/Lb = 0. For small initial inclinations (θbd,0 .
5◦), inclusion of feedback can drastically damp the inclination, thereby reducing
the final obliquity.

with fs a free parameter between 0 − 1 quantifying the total amount of mass

accreted onto the stars.

Accretion from the circumbinary disk onto the binary introduces accretion

torques, which act to align both the disk and binary, and the spin axis and bi-
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nary. The accretion torques take the form(
dLb

dt

)
acc

= Nbdl̂d(
dS

dt

)
acc

= Nsbl̂b. (7.21)

with

Nbd ' Ṁacc,b

√
GMbab, (7.22)

Nsb ' Ṁacc,s

√
Gm0R0.

The interaction between an accreting binary and disk is a complicated problem,

with signifiant uncertainties in how the binary responds to the accreting mass.

As a result, in this paper, we will consider the effects of accretion only on the

directions of S and Lb, which yields alignment torques(
dl̂b
dt

)
acc

=
Nbd

Lb

(
l̂d − cos θbdl̂b

)
(

dŝ

dt

)
acc

=
Nsb

S

(
l̂b − cos θsbŝ

)
. (7.23)

We add equations (7.23) to the system of precessional equations (7.8) and nu-

merically integrate.

For an equal mass binary, the alignment timescale for the star-binary

(tsb,align ∼ S/Nsb) compared to the alignment timescale for the binary-disk

(tbd,align ∼ Lb/Nbd) is

tbd,align

tsb,align

' 41.7fs

(
k?

0.06

)−1(
Ω̂0

0.1

)−1

. (7.24)

where Ω̂0 = Ω0/
√
Gm0/R3

0. Since tbd,align/tsb,align ' 40, we will first neglect the

alignment of l̂b and l̂d (artificially setting Nbd = 0). In the following examples,

we integrate the equations for the binary, disk, and spin unit vectors according

to equations (7.8) and (7.23), with fs = fb = 1 in calculating Nsb. Figure 7.5
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Figure 7.5: Similar to Fig. 7.3, illustrating how the combination of spin feedback
and accretion torques can dramatically reduce the final obliquity. The top pan-
els, labled “(a)” show obliquity and the bottom panels, labeled “(b)” show the
binary-disk inclination. All panels have the same disk and binary properties as
in the previous figures. Panels (1) and (2): No accretion (fs = 0). Panel 1 shows
an idealized example neglecting the spin-feedback on the binary orbit, by arti-
ficially setting S/Lb = 0 (so that ωbs = 0), as in the left panels of Fig. 7.3. Panel
(2) shows the same result, but with feedback included, so that ωbs 6= 0. Since the
initially inclination is θbd = 10◦, the feedback torque has a very small effect on
the obliquity and inclination evolution. Panels (3) and (4): Effects of the accretion
torque Nsb (with fs = fb = 1), but neglecting Nbd, since the time for accretion
to align ŝ and l̂b is shorter than the time to align l̂b and l̂d (see equation [7.24]).
Including the accretion torque but neglecting the spin feedback (Panel 3) causes
the system to become captured into Cassini state 2 early, and the obliquity grows
to ∼ 70◦. Including both the accretion torque and spin feedback (Panel 4) also
results in quick capture into Cassini state 2, but causes both the obliquity and in-
clination to damp to small values. These examples show that the spin feedback
in conjunction with accretion torques is an important ingredient in this problem.

systematically presents how the combined effects of accretion and spin feedback

act to suppress obliquity growth, in spite of tight capture into Cassini state 2.

Next we include both alignment torques, Nsb and Nbd. Figure 7.6 com-

pares the obliquity and inclination evolution for highly suppressed accretion

(fb = 0.1), and moderate accretion (fb = 0.5). Suppressed accretion causes
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the system to retain a binary-disk inclination above a few degrees, leading to

a ∼ 70◦ final obliquity. In contrast, although moderate accretion leads to ini-

tial obliquity excitation, eventually the accretion torques act to align the entire

star-binary-disk system.

Sustained obliquity excitation requires that the binary and disk maintain a

sufficiently high inclination. In order to prevent alignment of l̂b and l̂d due to

accretion torques requires that the alignment timescale to be greater than the

disk mass loss timescale: Lb/Nbd & Md/Ṁd ' tdisk. This implies a maximum

disk mass in order to prevent alignment:

Md,max .
µb

fb

. (7.25)

There also exists a minimum initial disk mass necessary for capture into Cassini

state 2 (equation [7.18]). Together, these conditions specify a range of initial

disk masses allowing sustained obliquity excitation, due to capture into Cassini

state 2, but preventing star-binary-disk alignment due to accretion from the

disk. This range of disk masses is shown in Fig. 7.7, assuming the canonical

binary and disk parameters. At large fb, the available parameter space nar-

rows, indicating that accretion must be at least partially suppressed in order for

sustained obliquity excitation. Also included for reference are the combinations

of (fb,Md,0) used in the numerical integrations depicted in Fig. 7.6. The example

shown in the lefthand panels of Fig. 7.6 (resulting in a high obliquity) lie com-

fortably within the parameter space for resonant excitation, while the example

shown in the right panels of Fig. 7.6 lies right at the upper mass limit.

Figure 7.7 delineates the paramater space for obliquity excitation, but does

not yield information on the actual degree of obliquity growth. Fig. 7.8 shows

results of numerical integrations with varying fb (and assuming fs = 1), and
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Figure 7.6: Similar to Figs. 7.3 and 7.5, showing the effects of including both Nbd

and Nsb. Both examples have the spin feedback on the orbit included. The left
panels show highly suppressed accretion (fb = 0.1), and the right panels show
moderate accretion (fb = 0.5).

several different initial binary-disk inclinations spanning 5◦ − 30◦. Higher ini-

tial inclinations are more favorable for obliquity growth because the fractional

degree of binary-disk realignment is lower. An initial inclination θbd = 30◦

requires moderately suppressed accretion (fb . 0.5) in order to produce sub-

stantial obliquity. In contrast, θbd = 5◦ requires highly suppressed accretion

(fb . 0.15).

Thus far, we have assumed binary properties fixed to similar values as the

observed DI Herculis system. However, since the obliquity growth must oc-

cur early (when the disk mass is of order the binary mass), the initial binary

properties may have been substantially different from the observed values. For

example, the stellar radii are expected to be larger, the disk morphology may

have differed, and the binary semi-major axis may have been larger or smaller.
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Figure 7.7: Parameter space allowing sustained obliquity excitation. The dashed
grey line indicates the minimum disk mass (in units of the binary mass) needed
for efficient obliquity growth due to capture into Cassini state 2 (see equation
[7.18]). The solid black line indicates the maximum disk mass to avoid binary-
disk realignment due to accretion (see equation [7.25]). In calculating these
lines, we have assumed the canonical binary properties (similar to the observed
values in DI Herculis), as specified in Fig. 7.1, and disk inner and outer radii
rin = 2ab and rout = 30rin. The blue and red crosses indicate the values of Md,0

and fb used in Fig. 7.6.

Figure 7.9 shows how the parameter space for sustained obliquity excitation

widens or narrows with varying properties of the binary or disk. Enlarging

the binary semi-major axis widens the available parameter space for sustained

obliquity excitation. Enlarging the stellar radius and inner and outer disk edges

narrows the available parameter space.
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Figure 7.8: “Final” obliquity (top) and binary-disk inclination (bottom), ob-
tained when t = 10tdisk, illustrating the affects of accretion torques and initial
binary-disk inclination θbd,0, as labeled. The binary and disk parameters are the
canonical values as in previous figures, and the accretion efficiency parameter
onto the stellar masses is fs = 1. In order to prevent binary-disk alignment, the
accretion efficiency parameter (onto the binary) must satisfy fb . 0.5 for the
range of θbd,0 shown here.
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Figure 7.9: Similar to Fig. 7.7, illustrating how differing binary and disk prop-
erties widen or narrow the available parameter space for sustained obliquity
excitation. In all panels, the grey lines show the canonical parameters (as in
Fig. 7.7), and the colored lines show the effects of changing a given property, as
labeled. Enlarging the binary semi-major axis widens the available parameter
space for sustained obliquity excitation (top left panel). Enlarging the stellar
radius (top right panel), and inner and outer disk edges (bottom left and right
panels) narrows the available parameter space.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

This dissertation has examined the spin and orbital dynamics of giant plan-

ets and stellar binaries in a variety of contexts, with the broad goal of better

understanding formation and migration histories of closely-orbiting systems.

Important observational motivation for many of the dynamical studies this dis-

sertation is the existence of close-in giant planets (hot and warm Jupiters) with

a range of eccentricities and stellar spin-orbit misalignments (obliquities). In

Chapter 2, I study orbital migration and obliquity excitation of giant planets

in stellar binaries, and subsequent hot Jupiter formation. Chapter 3 presents a

method for resonantly exciting stellar obliquities in both hot and warm Jupiter

systems with inclined companions. Chapters 4 and 5 present mechanisms for

producing eccentric warm Jupiters, starting from a low-eccentricity state consis-

tent with either in-situ formation, or migration within the protoplanetary disk.

In addition to these planetary studies, this dissertation has studied two mech-

anisms for exciting stellar obliquities, starting from an initially aligned state

(Chapters 6 and 7).

There are several opportunities for future work. For example, the giant

planet tidal migration model presented in Chapter 2 may be adapted to explore

different mass regimes. “Hot” brown dwarfs (with orbital periods of several

days) are observed, especially orbiting F-type stars. Similar to hot Jupiters, the

presence of such closely orbiting brown dwarf companions raises questions re-

garding the migration mechanism. While several studies of high-eccentricity

tidal migration of giant planets and stellar binaries exist, complementary mi-

gration studies of brown dwarfs have not been conducted.

271



The treatment of planet-planet collisions in the N-body scattering experi-

ments presented in Chapter 5 may be refined. The present treatment assumes

perfect inelastic mergers, so that mass and momentum are conserved. Such a

treatment is a standard assumption in previous N-body exoplanet studies, but

in reality additional physical ingredients such as tidal capture and mass loss

may play a role in determining the final properties of the collision product. The

finding in this dissertation that many planet-planet collisions are grazing, rather

than head-on, serves as further motivation for further study.

Some of the secular problems explored in this dissertation (Chapters 3 and

4) require significant mutual inclinations in multi-planet systems. Mutual incli-

nations of observed giant planet pairs are almost entirely unconstrained, with

measurements existing only in a few special systems (Dawson et al., 2014; Mills

& Fabrycky, 2017). Knowledge of mutual inclinations in observed systems is of

utmost importance in the future of exoplanet dynamics, and will help to identify

the relevance of theoretical studies with much larger inclinations than observed

in the solar system. Mutual inclinations in transiting planetary systems may be

inferred due to nodal precession of the orbital plane, leading to transit duration

variations. In addition, Gaia astrometry will allow for some constraints on mu-

tual inclinations. Exploiting these techniques, as well as developing new meth-

ods will yield a more complete picture of exoplanetary system architectures and

dynamical evolution.
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APPENDIX A

ORBITAL & SPIN SECULAR EQUATIONS OF MOTION

In this Appendix we present the secular equations of motion governing the

planetary orbit and stellar spin axis. The reader is referred to Table 2.1 for a

concise summary of the notation used in this paper.

A.0.1 Lidov-Kozai Oscillations

The hierarchical triple systems studied in this paper consist of an inner binary

M? (host star) and Mp (planet), with total mass Mtot = M? + Mp, with an outer

stellar mass binary companion Mb. The planet has semi-major axis a and eccen-

tricity e, and the binary companion has semi-major axis ab and eccentricity eb.

The inner binary is characterized by the unit vectors L̂ and ê, where L̂ is in the

direction of the orbital angular momentum vector L, and ê is in the direction of

the eccentricity vector e. Similarly, the outer binary is characterized by the unit

vectors L̂b and êb. Since we are considering systems in the regime Mp � Mb,

the effect of the planet on the outer binary is negligible, and L̂b and êb are held

constant. The inclination of the planetary orbit relative to the outer binary is

specified by cos θlb = L̂ · L̂b. If the outer binary companion has θlb & 40◦, the

planet undergoes periodic variations in its orbital eccentricity and inclination

(Lidov, 1962; Kozai, 1962), denoted in this paper as Lidov-Kozai (LK) oscilla-

tions. The secular equations of motion for L and e are, to octupole order in the
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disturbing potential of the binary (Liu et al. 2015, see also Petrovich 2015b),

dL

dt

∣∣∣∣
LK

=
dL

dt

∣∣∣∣
LK, quad

+
dL

dt

∣∣∣∣
LK, oct

=
3

4

L

tk(1− e2)1/2

[
(j · L̂b) j× L̂b − 5(e · L̂b) e× L̂b

]
− 75

64

εoctL

tk(1− e2)1/2

{[
2
[
(e · L̂b)(j · L̂b)

+ (e · L̂b)(j · êb)
]

j + 2
[
(j · êb)(j · L̂b)

− 7(e · L̂b)(e · L̂b)
]

e

]
× L̂b

+

[
2(e · L̂b)(j · L̂b) j +

[8

5
e2 − 1

5

− 7(e · L̂b)
2 + (j · L̂b)

2
]

e

]
× êb

}
,

(A.1)

and

de

dt

∣∣∣∣
LK

=
de

dt

∣∣∣∣
LK, quad

+
de

dt

∣∣∣∣
LK, oct

=
3

4 tk

[
(j · L̂b) e× L̂b + 2 j× e− 5(e · L̂b)j× L̂b

]
− 75εoct

64 tk

{[
2(e · L̂b)(j · L̂b) e

+
[8

5
e2 − 1

5
− 7(e · L̂b)

2 + (j · L̂b)
2
]

j

]
× êb

+

[
2
[
(e · êb)(j · L̂b) + (e · L̂b)(j · êb)

]
e

+ 2
[
(j · L̂b)(j · êb)− 7(e · L̂b)(e · êb)

]
j

]
× L̂b

+
16

5
(e · êb) j× e

}
,

(A.2)

where we have defined j =
√

1− e2L̂. The terms in braces describe the octupole-

level perturbation of the binary companion, where the relative “strength”

of the octupole term is quantified through the parameter εoct, defined by

Eq. (2.4). Note that in Eqs. (A.1) and (A.2) we have introduced a characteristic
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(quadrupole) timescale for LK oscillations tk, given by Eq. (6.1). Focusing only

on the quadrupole terms, we note that the binary companion induces simulta-

neous precession and nutation of the orbital axis L̂ at a rate ΩL ≡ |dL̂/dtquad| =

[(Ωpl sin θlb)2 + θ̇2
lb]1/2, see Eq. (2.5). From the standard equations for LK oscil-

lations (in terms of orbital elements) to quadrupole order (e.g. Innanen et al.,

1997),

Ωpl sin θlb =
3

8tk
sin 2θlb

(5e2 cos2 ω − 4e2 − 1)√
1− e2

θ̇lb = − 15

16tk
e2 sin 2θlb sin 2ω√

1− e2
. (A.3)

The value of ΩL therefore depends on the argument of pericenter ω. A good

approximation to ΩL is

ΩL '
3(1 + 4e2)

8tk
√

1− e2
| sin 2θlb|. (A.4)

This expression is exact at both e = 0 and e = emax (when ω = π/2).

A.0.2 Spin Evolution Due to the Stellar Quadrupole

We denote the spin angular momentum of the host star as S? = I?Ω?Ŝ?, where

I? = k?M?R
2
? is the moment of inertia, Ω? is the spin frequency, and Ŝ? is a

unit vector along the spin axis. Note that we have introduced a coefficient k?,

describing the interior mass distribution, where k? = 0.1 is used throughout this

paper.

Due to the rotational distortion of the star, the stellar spin axis S? precesses

around the orbital axis L̂ according to

dS?
dt

∣∣∣∣
SL

= ΩpsL̂× S?, (A.5)
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with the spin precession frequency Ωps (see Section 2.2.1) given by Eq. (6.35).

The effects on the planetary orbit due to the stellar quadrupole are

dL

dt

∣∣∣∣
SL

= − dS?
dt

∣∣∣∣
SL

= ΩpsS? × L̂, (A.6)

and
de

dt

∣∣∣∣
SL

= −ω̇?
[
cos θslŜ? × e +

1

2
(1− 5 cos2 θsl)L̂× e

]
, (A.7)

where ω̇? quantifies the rate of apsidal precession due to the oblate star, and is

given by

ω̇? = −S?
L

Ωps

cos θsl

=
3

2
kq?

(
R?

a

)2
Ω̂2
?

(1− e2)2
n. (A.8)

A.0.3 Pericenter Precession Due to Short Range Forces

Besides the pericenter precession induced by the oblate host star, given in

Eq. (A.7), additional short range forces (SRFs), due to general relativistic cor-

rections, the (static) tidal bulge in the planet, and rotational distortion of the

planet, induce precession of the eccentricity vector, given by (e.g. Correia et al.,

2011; Liu et al., 2015)

de

dt

∣∣∣∣
SRF

=
de

dt

∣∣∣∣
GR

+
de

dt

∣∣∣∣
Tide

+
de

dt

∣∣∣∣
rot

= (ω̇GR + ω̇Tide + ω̇rot)L̂× e,

(A.9)

where the precession frequencies take the form

ω̇GR =
3GMtot

c2a(1− e2)
n, (A.10)

ω̇Tide =
15

2
k2p

M?

Mp

(
Rp

a

)5
f4(e)

j10
n, (A.11)

and

ω̇rot =
3

2
kqp

(
Rp

a

)2 Ω̂2
p

(1− e2)2
n, (A.12)

276



where f4(e) in Eq. (A.11) is a dimensionless function of eccentricity, given in

Eq. (A.21), and in Eq. (A.12) we have introduced a “planetary rotational distor-

tion coefficient” kqp = 0.17, analogous to the stellar rotational distortion coeffi-

cient.

A.0.4 Dissipative Tides in the Planet

The planet has spin angular momentum Sp = IpΩpŜp, where Ip = kpMpR
2
p is

the moment of inertia, Ωp is the rotation rate, and where kp = 0.25 throughout

this paper. Averaged over an eccentricity precession timescale, the change in

the planet spin due to tidal dissipation is (Correia et al., 2011)

1

Sp

dSp
dt

= − 1

2taj13

L

Sp

[
j3f5(e)(Ŝp + cos θpL̂)

Ωp

2n
− f2(e)L̂

]
, (A.13)

where cos θp = Ŝp · L̂, and f2(e) and f5(e) are given in Eqs. (A.19) and (A.22). The

timescale ta is

1

ta
= 6k2p∆tL

M∗
Mp

(
Rp

a

)5

n2

≈ 7.3× 10−21

yr
χk̄2p

M̄?M̄tot

M̄p

R̄5
p

ā8
, (A.14)

where ∆tL is the lag time, k2p is the tidal Love number, and where we have

introduced a tidal enhancement factor χ (relative to Jupiter), defined such that

∆tL = 0.1χ sec. In this paper we assume Sp = SpL̂ (see Section 2.3.3 for a

justification of this approximation), so that Eq. (A.13) becomes

1

Sp

dSp
dt

= − 1

2taj13

L

Sp

[
j3f5(e)

Ωp

n
− f2(e)

]
. (A.15)

The effect of tidal dissipation on the orbit is

dL

dt

∣∣∣∣
Tide

= −dSp
dt

= −ṠpL̂, (A.16)
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The change in the eccentricity vector due to tidal dissipation takes the form

de

dt

∣∣∣∣
Tide

=− 1

2taj13

[
j3f4(e)

Ωp

2n
(e · Ŝp)L̂

−
(

11

2
j3f4(e)

Ωp

n
− 9f3(e)

)
e

]
,

(A.17)

where the first term inside the brackets vanishes if Ŝp = L̂. The dimensionless

functions of eccentricity used to describe the tidal evolution take the form

f1(e) = 1 +
31e2

2
+

255e4

8
+

185e6

16
+

25e8

64
(A.18)

f2(e) = 1 +
15e2

2
+

45e4

8
+

5e6

16
(A.19)

f3(e) = 1 +
15e2

4
+

15e4

8
+

5e6

64
(A.20)

f4(e) = 1 +
3e2

2
+
e4

8
(A.21)

f5(e) = 1 + 3e2 +
3e4

8
. (A.22)

A.0.5 Stellar Spin-down due to Magnetic Braking

We use the Skumanich law (Skumanich, 1972), given by

dΩ?

dt
= −αMB Ω2

?Ω?, (A.23)

where we set αMB = 1.5× 10−14 yr to model G-type stars, and αMB = 1.5× 10−15

yr to model F-type stars (from Barker & Ogilvie, 2009). See also Section 2.2.1.
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APPENDIX B

LK MAXIMUM ECCENTRICITY FOR NON-ZERO INITIAL

ECCENTRICITY

In this Appendix, we demonstrate how the analytic results of Section 2 may be

modified when the initial eccentricity e0 6= 0. In the following results, we restrict

the initial eccentricity to moderate values, e0 . 0.3. This is justified because our

goal is to identify the required properties of tertiary companions in raising the

eccentricity of binaries starting from low or moderate initial values.

For general values of the initial eccentricity e0, e oscillates between a min-

imum value emin and a maximum value emax, with emin ≤ e0 ≤ emax. Both

emax and emin depend on the initial pericenter angle ω0 ≡ ω(e0). If ω0 = 0, π

or ω0 = π/2, 3π/2, then either e0 = emin or e0 = emax. For other values of ω0, we

have emin ≤ e0 ≤ emax.

When e0 6= 0, the minimum and maximum eccentricities may occur either

at ω = 0, π or ω = π/2, 3π/2, and ω may either circulate or librate. To deter-

mine emax from a given set of initial conditions, we calculate ω(e) using energy

conservation, given by:

ΦQuad(e, ω) + ΦSRF(e) = ΦQuad(e0, ω0) + ΦSRF(e0). (B.1)

See Section 6.2.1 for definitions of ΦQuad and ΦSRF. Requiring 0 ≤ cos2 ω ≤ 1

allows the maximum and minimum eccentricities to be determined, and are

given by max[e(ω)] and min[e(ω)].

For specified (e0, ω0), along with the orbital geometry and physical proper-

ties of m0, m1, and m2 (which enter through η, εGR, εTide and εRot; see Eqs. [6.6]

and [6.11]), the value of emax depends on the initial inclination I0. In the case of
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e0 ' 0, the “LK window,” (i.e. the range of inclinations that allow eccentricity

oscillations) may be explicitly calculated (see Section 6.2.2), and takes the sim-

ple form of Eqs. (6.20) and (6.23). When e0 6= 0, the LK window is modified,

and becomes somewhat fuzzier. In Fig. B.1 we demonstrate how non-zero e0

affects the LK window, by calculating emax as function of η and cos I0, for a fidu-

cial value of εGR and several different combinations of (e0, ω0). Compare with

Fig. 6.1. For reference, the explicit expressions for the LK window when e0 ' 0

(Eqs. [6.20] and [6.23]) are also shown. For η . 1, Eqs. (6.20) remain an excel-

lent prediction of whether eccentricity excitation may occur, regardless of the

values of e0 and ω0. When η & 1 and ω0 6= 0, the range of inclinations allowing

eccentricity increases is modified compared to the e0 ' 0 case.

Figure B.2 depicts emax and emin versus I0 for several different values of e0

and ω0, assuming the same orbital and physical parameters as in Fig. 6.2. As

discussed in Section 6.2.3, there is a value of I0 that yields a maximum value of

emax (the “limiting eccentricity”), denoted as I0,lim and elim respectively. Regard-

less of e0 and ω0, elim and I0,lim have nearly the same values.
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Figure B.1: emax, in terms of η and cos I0, for various combinations of e0 and ω0.
We have fixed εGR = 1, and have set εTide, εRot = 0. Compare with Fig. 6.1.
For reference, the black curves show the analytic expressions for the range of
cos I0 allowing eccentricity increases from e0 ' 0 (the “LK window”), derived in
Section 6.2.2 (Eqs. [6.20] and [6.23]). Non-zero e0 does not substantially modify
the LK window unless η & 1.
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Figure B.2: Maximum and minimum eccentricities as a function of initial incli-
nation, for various initial eccentricities e0 and phase angles ω0. We show ω0 = 0◦

(black curves), ω0 = 45◦ (blue curves), and ω0 = 90◦ (red curves). The solid
curves depict emax and the dashed curves depict emin. Compared to the e0 ' 0
case, non-zero e0 can lead to eccentricity oscillations for a wider range of I0,
depending on the value of ω0. The lower inclination boundary for eccentric-
ity growth (cos I0)+ approaches zero, but the upper boundary corresponding
to (cos I0)− remains. The orbital and physical parameters are the same as in
Fig. 6.2. Ilim and elim (see Section 6.2.3) are nearly independent of e0 and ω0.
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APPENDIX C

TREATMENT OF PLANET-PLANET COLLISIONS

As in previous N-body works, this paper has assumed completely inelastic col-

lisions, so that once the distance between two planets becomes less than the

sum of their physical radii, the planets merge conserving mass and momentum.

Such a treatment is clearly a simplification. In reality, giant planets will tidally

interact upon close encounters, leading to mass loss, and other physical effects

not captured. In addition, head-on versus grazing collisions may result in very

different outcomes. Although expanding on this treatment is beyond the scope

of this paper, here we discuss some of the caveats and limitations by assuming

such a collision treatment.

We define the collision impact parameter, bcoll = |r× v̂|where r is the relative

distance between the center of mass of each planet, and v̂ is the relative veloc-

ity unit vector. The top left panel of Fig. C.1 shows that many planet-planet

collisions (from fiducial) are grazing, with bcoll/(2Rp) ∼ 1.

Next we discuss some aspects of the collision of two planets m1 and m2,

with radii R1 and R2. Once the planet-planet gravitational interaction becomes

sufficiently strong so that the tidal gravity from the host star can be ignored, the

scattering process up to just before merging can be modeled approximately as

a parabolic encounter. Denote v∞ as the relative velocity of the reduced mass µ

as it enters the Hill sphere of the “primary” mass M = m1 + m2, and vcoll as the

relative velocity just before collision. Energy conservation yields

v2
∞ = v2

coll − v2
0, (C.1)
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where v2
0 = 2GM/(R1 +R2). Angular momentum conservations yields

b∞v∞ = bcollvcoll, (C.2)

where b∞ is the impact parameter as the secondary particle µ enters the hill

sphere of the primary M .

The upper right panel of Fig. C.1 shows vcoll/v0. As expected, the majority

of collisions have vcoll/v0 ∼ 1. The lower left panel of Fig. C.1 shows v2
∞/v

2
0 .

Typically v2
∞/v

2
0 � 1. Negative values of v2

∞ indicate that equation (C.1) does

not adequately describe the scattering dynamics. Finally, the lower right panel

of Fig. C.1 shows b∞ in units of the Hill radius of M . These result will be useful

as initial conditions for future numerical simulations (e.g. SPH simulations) of

planet-planet collisions.
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Figure C.1: Properties of scattering outcomes, showing that most collisions are
grazing (upper left panel). The remaining panels are useful in establishing ini-
tial conditions for future numerical simulations of planet-planet collisions.
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APPENDIX D

DISCRETE MIXTURE MODEL FOR PLANET ECCENTRICITIES

In this Appendix we outline the mixture model mentioned in Section 5.3.1.

In this model, we augment the sample of one-planet systems obtained from

fiducial with a population of low-eccentricity planets (that did not undergo

scattering), in order to better match the observed distribution of solitary WJs

with the scattering calculations. This model allows us to obtain a quantitative

estimate of the extent to which in-situ scattering may have contributed to the

population of observed solitary eccentric WJs. We note that this calculation ne-

glects the uncertainties of observed eccentricities. Accounting for uncertainties

of observed eccentricities in this calculation is not a simple task, because no

standard procedure has been adopted in eccentricity uncertainty estimates.

We assume a mixture model such that the probability distribution function

for eccentricities takes the form

f(e) = Ffcirc(e) + (1−F)fscat(e), (D.1)

where fcirc is the injected probability density function of low-eccentricity plan-

ets, and fscat is the empirical probability density function of eccentricities of

one-planet systems obtained from fiducial. The free parameter F = [0, 1]

quantifies the number of injected low-eccentricity planets Ncirc relative to the

total number of planets Ncirc +Nscat, so that

F =
Ncirc

Ncirc +Nscat

. (D.2)

Clearly, F = 0 corresponds to all of the eccentricities arising from scattering,

while F = 1 corresponds to none of the eccentricities arising from scattering.
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We adopt a half-Gaussian for fcirc(e) peaked at e = 0 and truncated at e = 1,

and a range of characteristic widths σ. This accounts for the fact that modest

eccentricities may be generated by factors other than scattering, e.g. by planet-

disk interactions. To construct a smooth probability density function for fscat(e),

we employ a Gaussian Kernel-density estimate. Armed with fcirc(e) and fscat(e),

we explore a grid of values for the parameters F , σ, and calculate the likelihood

function for the observed eccentricities ei, with i = 1, nobs = 83,

L =

nobs∏
i=1

[
Ffcirc(ei) + (1−F)fscat(ei)

]
. (D.3)

We explore the rangesF = 0−1 and σ = 0−0.2. We restrict σ to a relatively small

range because we are considering that the injected population experienced only

modest eccentricity excitation. Maximizing L yields the parameter values F ≈

0.35 and σ = 0.07. In other words, the observed eccentricity distribution of

single WJs is consistent with scattering having occurred in∼ 65% of all systems.

This estimate, alongside 1, 2, 3−σ contours is shown in Fig. D.1. Taking the 95%

contour as the uncertainty, we find that F lies in the range 18%− 54%. In other

words, the observed eccentricity distribution of solitary WJs is consistent with

scattering having contributed to roughly half or more of systems.
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Figure D.1: Estimated parameters of the mixing model discussed in Appendix
D, using maximum likelihood estimation. The cross indicates the maximum
likelihood, and the contours indicate the 68%, 95% and 99% confidence intervals.
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