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Accretion disks–distributions of gas orbiting a central massive object–are

found in a variety of astrophysical settings, such as protoplanetary disks around

young stars and disks around supermassive black holes in galactic centers. In

this dissertation, I explore several hydrodynamical processes in accretion disks,

primarily using numerical hydrodynamics simulations. I study the effect of vis-

cosity on unstable oscillation modes in disks around black holes, showing that it

can either suppress or enhance instability. I study the effect of a vortex instabil-

ity that may arise at the edges of dead zones in protoplanetary disks, showing

that it can transport angular momentum through the disk, as well as trap dust,

with the latter process resulting in observable morphological features. I investi-

gate the resonant truncation of disks in binaries when they are misaligned with

the binary orbital plane, showing that misaligned disks around stars with com-

panions are larger than aligned disks, and that misaligned circumbinary disks

generally have smaller cavities than aligned disks. I undertake a comprehen-

sive investigation of the dynamics and evolution of circumbinary disks, with a

particular emphasis on the transfer of angular momentum between the disk and

binary. I find that circumbinary disks may cause binaries to expand, contrary to

the typical expectation that disks tend to harden binaries. Finally, I investigate

the migration of a low-mass planets near the inner edge of protoplanetary disk,

and show that interactions with the inner edge halt the migration of the planet

when its orbital radius is several times larger than the inner disk radius.
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CHAPTER 1

INTRODUCTION

Astrophysical disks are found in a variety of astrophysical contexts, includ-

ing protoplanetary disks around young stars, disks around compacts objects

accreted from binary companions, and disks around supermassive black holes

in galactic nuclei. These ubiquitous rotating flows serve as a laboratory for a

wide variety of hydrodynamical processes. In this dissertation, I explore sev-

eral such processes, including hydrodynamical instabilities, angular momen-

tum transport, dust-gas interactions, and binary-disk/planet-disk interactions.

Many of these processes have implications for the formation and evolution of

planetary systems, but also have applicability to a wider variety of systems,

such as coaelescing supermassive black hole binaries. The studies presented in

this dissertation have mainly been carried out using two-dimensional numerical

hydrodynamics simulations (with the exception of chapter 5, which uses only

semi-analytic methods), using several different hydrodynamical codes, includ-

ing PLUTO (Mignone et al. 2007), FARGO3D (Benı́tez-Llambay & Masset 2016),

and LA-COMPASS (Li et al. 2005). In the remainder of this chapter, I briefly

describe the background, context, and main results of each of the remaining

chapters.

The transport of angular momentum plays a central role in the evolution of

accretion disks. In the classical view of disk evoution, a phenomenological vis-

cosity, often characterized by the viscous α parameter (Shakura & Sunyaev 1973)

provides friction between differentially rotating annuli, leading to the outward

transfer of angular momentum. As a result, the disk spreads, with the inner

regions being accreted by the central star and the outer regions dispersing to

1



large radii (Lynden-Bell & Pringle 1974). The mechanism behind the effective

viscosity was elusive until the discovery of the importance of the magnetoro-

tational instability (MRI; Balbus & Hawley 1991, 1998), which can give rise to

turbulence that can effectively transport angular momentum. This mechanism

has been a strong candidate for accretion disks which sustain a sufficient level

of ionization.

Viscosity also plays a role in the short-term dynamics of disks, impacting the

excitation, damping, and propagation of waves. While viscosity often damps

waves, it can sometimes excite them due to the “viscous overstability” effect

(Kato 1978; Schmit & Tscharnuter 1995; Schmidt et al. 2001). In chapter 2, I

numerically investigate the effect of viscosity on a class of oscillation modes in

accretion disks around black holes. These “p-modes”, related to spiral density

waves, are intrinsically unstable due to a general relativistic effect of the rotation

profile near the central black hole (Tsang & Lai 2008; Lai & Tsang 2009; Fu & Lai

2011, 2013), and may be the origin of the “quasi-periodic oscillations” (QPOs)

in the X-ray light-curves of some accreting black hole binaries (see Remillard &

McClintock 2006; Belloni et al. 2012). I find that these oscillations can be either

driven by viscosity or somewhat suppressed by it, and that in some cases, vis-

cosity excites a different type of oscillation arising due ot interactions with the

inner disk boundary (Tsang & Lai 2009; Fu & Lai 2012). However, the character-

istic frequency signature of observed QPOs is not reproduced by these mecha-

nisms.

In protoplanetary disks–the birthplaces of planetary systems–the role of the

MRI in transporting angular momentum is uncertain. Shortly after the discov-

ery of the importance of the MRI, it was realized that large regions of proto-
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planetary disks are too cold and dense to achieve the necessary levels of ion-

ization required for the MRI to operate (Gammie 1996). This notion was later

supported by magnetohydrodynamics simulations including non-ideal effects

resulting from the weakly ionized conditions (e.g., Bai & Stone 2013; Lesur et

al. 2014; Simon et al. 2015). The cold, inactive regions of protoplanetary disks

are known as “dead zones”. In the absence of MRI, alternative angular mo-

mentum transport mechanisms must operate in order to explain the inferred

lifetimes of protoplanetary disks (e.g., Hartmann et al. 1998; Haisch et al. 2001).

This is an area of intense, ongoing research (see Armitage 2011; Turner et al. 2014

for reviews).

Among several promising mechanisms for “reviving” the dead zone is the

Rossby wave instability (RWI), a global instability of axisymmetric “bumps” in

disks (Lovelace et al. 1999; Li et al. 2000, 2001), which can arise at the edges of

dead zones. Vortices and density waves produced by the RWI produce fluid

stresses which transport angular momentum (Varnière & Tagger 2006; Lyra &

Mac Low 2012; Regály et al. 2012). Vortices are also of interest due to their ability

to trap dust particles (Barge & Sommeria 1995; Godon & Livio 2000; Méheut et

al. 2012), which may facilitate the formation of planetesimals, as well as produce

observable morphological features in protoplanetary disks (Lyra & Lin 2013;

Zhu & Stone 2014). Chapters 3 and 4 are concerned with the consequences of

the RWI excited at dead zone edges.

In chapter 3, I present the results of numerical simulations demonstrating

the effectiveness of the RWI at reviving dead zones. This study improves upon

existing work by considering a dead zone of finite radial extent (i.e., having both

an inner and outer edge), as well as by evolving the disk over a sufficiently long
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timescale to verify that a quasi-steady state is reached. The effective viscous α

parameter due to the the RWI can be as large as several times 10−2, and it is

likely that RWI will revive the dead zone before it accumulates enough mass to

become gravitationally unstable.

Several evolved protoplanetary disks, known as transition disks, exhibit

strong asymmetries in dust emission at millimeter wavelengths (van der Marel

et al. 2013; Casassus et al. 2013; Isella et al. 2013; Pérez et al. 2014). In chapter

4, using the results of hydrodynamical simulations of mutually-coupled dust

and gas, I show that these features can be created by RWI vortices at dead zone

edges. Most importantly, this study includes the effect of the back-reaction drag

of the dust on the gas, which is known to destroy vortices in some circumstances

(e.g., Fu et al. 2014; Surville et al. 2016). I find that vortices created at dead zone

edges are not destroyed by the dust back-reaction, due to the continuous re-

plenishment of the vortex by the buildup of mass at the dead zone edge. As a

result, dust can remain trapped in vortices over timescales comparable to the

disk lifetime (∼ 104 orbits). I create synthetic millimeter wavelength interfero-

metric images demonstrating the observability of these features.

In a variety of astrophysical contexts, a disk-hosting object (star or compact

object) may be a member of a binary. Three separate disks may exist in a bi-

nary: two circumstellar disks (one around each member of the binary), and a

circumbinary disk surrounding the entire binary. The tidal gravitational field

of the binary modifies the structure, dynamics, and evolution of both types of

disks, by exciting waves which carry angular momentum away from the binary

orbit (Goldreich & Tremaine 1979). This effect overwhelms the viscous spread-

ing of the disk and truncates it, in a manner analogous to the opening of a gap
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in a protoplanetary disk by a massive planet (e.g., Lin & Papaloizou 1979, 1986).

In the case of a circumstellar disk, the outer edge is truncated, while for a cir-

cumbinary disk, the inner edge is truncated, resulting in a low-density central

cavity surrounding the binary.

The truncation of disks in binaries was first investigated by Artymowicz &

Lubow (1994), for the case of disks which are aligned with the orbital plane of

the binary. In chapter 5, I extend their analysis to include disks which are mis-

aligned with the binary orbital plane. Such disks are theoretically predicted to

exist in young stellar binaries, due to the turbulent formation processes of stars

and disks (e.g., Bate, Bonnell & Bromm 2003; McKee & Ostriker 2007; Fielding et

al. 2015), and have been detected observationally (e.g., Davis et al. 1994; Winn et

al. 2004; Jensen & Akeson 2014). I find that misaligned circumstellar disks have

systematically larger outer radii than aligned disks, and are likely to fill their

Roche lobes if inclined by more than 45◦ − 90◦, depending on the binary mass

ratio and disk viscosity parameter. Misaligned circumbinary disks generally

have smaller inner radii than aligned disk, but the details depend sensitively on

the binary and disk parameters.

Circumbinary disks are host to a variety of rich dynamical processes, includ-

ing periodic variability of the binary accretion rate (e.g., Artymowicz & Lubow

1996; MacFadyen & Milosavljević 2008), disk eccentricity, which has implica-

tions for the growth of planets around binaries (Meschiari 2012; Rafikov 2013;

Silsbee & Rafikov 2015), and the exchange of angular momentum with the bi-

nary through gravitational torques, impacting the orbital evolution of the bi-

nary. The angular momentum exchange is thought to play a central role in facil-

itating the mergers of supermassive black hole binaries binaries (e.g., Begelman
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et al. 1980, Armitage & Natarajan 2002; Kelley et al. 2016), which are expected to

host circumbinary disks as a consequence of galaxy mergers (e.g., Begelman et

al. 1980; Ivanov et al. 1999; Milosavljević & Phinney 2005), providing a possible

solution to the so-called “final parsec problem”

In chapter 6, I investigate of the structure and evolution of circumbinary

disks using hydrodynamic simulations. This work is restricted to disks which

are coplanar with the binary. I improve upon existing numerical simulations of

circumbinary accretion (e.g., Artymowicz & Lubow 1996; Günther & Kley 2002;

Cuadra et al. 2009; MacFadyen & Milosavljević 2008; Shi et al. 2012; D’Orazio

et al. 2013; Farris et al. 2014) by considering both circular and eccentric binaries,

and by ensuring that the disk reaches a steady state. I explore the truncation,

periodic accretion variability, excitation of coherent eccentric modes in the disk,

and angular momentum transfer between the disk and binary. The critical find-

ing of this chapter is that the binary typically receives angular momentum from

the disk, implying that the binary orbit expands with time. This is contrary

to the expectation that gaseous disks around supermassive black hole binaries

may facilitate their mergers.

Planets interact with their natal disks, leading to angular momentum ex-

change and orbital migration (Goldreich & Tremaine 1979, 1980; Lin & Pa-

paloizou 1979). In chapter 7, I carry out numerical simulations of a low-mass

planet undergoing Type I migration (in which the planet does not significantly

perturb the disk structure; e.g., Ward 1997) near the inner boundary of a proto-

planetary disk. This study is a numerical verification of the theoretical predic-

tion of Tsang (2011), which proposes a modification of classical Type I migration

in a disk having a semi-rigid inner edge. The reflection of waves from the inner
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edge enhances the positive torque exerted on the planet by material inside its

orbit, which can result in the halting of inward migration. Using numerical sim-

ulations of planet-disk interaction, I confirm the plausibility of this mechanism,

and show it is more effective than predicted by the analytic theory. Planets as

massive as about 10 Earth masses can be trapped with a semi-major axis sev-

eral times larger than the inner disk radius, even for relatively large viscosities.

This implies that additional mechanisms besides disk-driven migration may be

required to form very short-period planetary systems.
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CHAPTER 2

VISCOUS DRIVING OF GLOBAL OSCILLATIONS IN ACCRETION

DISKS AROUND BLACK HOLES

2.1 Introduction

High-frequency quasi-periodic oscillations (HFQPOs) in X-ray flux have been

observed in a number of black hole X-ray binaries since the 1990s. These low-

amplitude (∼ 1%) variabilities occur in the so-called intermediate state or “steep

power law” state, and have frequencies of 40 − 450 Hz, comparable to the or-

bital frequency the innermost stable circular orbit (ISCO) of a ∼ 10 M� black

hole. This indicates that the physical mechanism behind them is closely related

to the dynamics of the innermost regions of black hole accretion disks (for re-

views, see Remillard & McClintock 2006 and Belloni et al. 2012). Several classes

of models for HFQPOs have been proposed (see Lai & Tsang 2009, Lai et al.

2013 for a review), including the orbital motion of hot spots in the disk (Stella

et al. 1999; Schnittman & Bertschinger 2004; Wellons et al. 2014), nonlinear

resonances (Abramowicz & Kluźniak 2001; Abramowicz et al. 2007), and oscil-

lations of finite accretion tori (Rezzola et al. 2003; Blaes et al. 2006). A large

class of models are based on relativistic diskoseismology, in which the HFQPO

frequencies are identified as those of global oscillations modes of the inner ac-

cretion disks (see Kato 2001 or Ortega-Rodrı́guez et al. 2008 for reviews of disk

oscillations, Lai et al. 2013 for their connection to HFQPOs). Two possible types

of oscillations are inertial-gravity modes (or g-modes) with vertical structure

This chapter is adapted from Miranda, Horák, & Lai (2015).
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and inertial-acoustic p-modes with no vertical structure. While the g-modes ex-

hibit a unique self-trapping property, there is some indication that they may be

destroyed by subthermal magnetic fields (Fu & Lai 2009), comparable to those

produced by saturation of the magnetorotational instability, or be destroyed by

turbulence (Reynolds & Miller 2009). Therefore it is unclear whether or not g-

modes can exist in real disks. However, p-modes are only weakly affected by

magnetic fields (Fu & Lai 2011), and their lack of vertical structure makes them

insensitive to turbulence.

The types of oscillations which are possible in the disk depend on the prop-

erties of its inner edge. Either the gas freely flows into the central black hole, or

there exists an inner edge which is impermeable to radial motions, for example

due to the presence of a magnetosphere (e.g. Bisnovatyi-Kogan & Ruzmaikin

1974, 1976; Igumenshchev et al. 2003; Rothstein & Lovelace 2008; McKinney

et al. 2012). In the latter case, there exist “trapped” p-modes which can propa-

gate between the reflective inner boundary and their inner Lindblad resonances.

A trapped p-mode can be overstable if it can draw negative energy from the

background flow through the corotation resonance. This is possible if the radial

derivative of vortensity (vorticity |∇×v| divided by surface density) is positive at

the corotation radius, which, in the absence of sharp changes in surface density,

is not possible in Newtonian disks, but can be achieved with general relativistic

(GR) effects (see Tsang & Lai 2008; Lai & Tsang 2009; Horák & Lai 2013). This

“corotational instability” has been demonstrated in 2D simulations of inviscid

disks (Fu & Lai 2013).

One of the goals of this paper is to examine the effect of viscosity on trapped

p-modes. In particular, we are interested in whether viscosity suppresses or en-
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hances their growth. The latter may occur as the result of viscous overstability.

We model the disk turbulent viscosity by the standard α-ansatz, with differ-

ent equations of state. The classic theory of viscous overstability describes an

axisymmetric instability in which viscosity injects energy drawn from the disk

shear into growing oscillations (Kato 1978; Schmit & Tscharnuter 1995; Schmidt

et al. 2001). This effect requires viscous forces to act in phase with oscillations,

which is achieved if the dynamic viscosity η scales sufficiently steeply with sur-

face density Σ, i.e., if the parameter A = d ln η/d ln Σ is larger than unity. Viscous

overstability has been demonstrated in both hydrodynamic (Latter & Ogilvie

2010) and N-body simulations (Rein & Latter 2013). Extensions of the original

axisymmetric theory show that a similar effect can drive non-axisymmetric os-

cillations (Papaloizou & Lin 1988; Lyubarskij et al. 1994). Previous analytical

calculations, based on local analysis (see Section 2.2), indicate that viscosity can

excite disk p-modes due to viscous forces acting in phase with the oscillation

(e.g. Ortega-Rodrı́guez & Wagoner 2000; Kato 2001). However, local analysis

cannot determine the damping or growth rate of global modes.

In the absence of a reflective boundary, the inner edge of the disk is free-

flowing, with gas interior to the ISCO plunging into the central black hole,

forming a transonic radial flow. Kato et al. (1988a) found that the sonic point

of such flow is unstable to axisymmetric perturbations for sufficiently large vis-

cosities, a mechanism which is distinct from the standard viscous overstability.

One-dimensional simulations of transonic disks have shown that viscosity can

drive global oscillations at the maximum epicyclic frequency κmax (Milsom &

Taam 1996; Mao et al. 2009). Two-dimensional and three-dimensional simula-

tions have shown global oscillations at the same frequency (O’Neill et al. 2009),

as well as at multiples of innermost stable orbital frequency ΩISCO (Chan 2009).
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Another goal of this paper is to study the conditions for producing axisymmet-

ric and various non-axisymmetric modes in transonic disks.

The outline of this paper is as follows. In Section 2.2, we review the theory

of viscous overstability, deriving the formula for the growth rate of local non-

axisymmetric perturbations due to viscosity. We also provide estimates of the

global growth rates of trapped p-modes under a pseudo-Newtonian potential.

The setup for our numerical experiments is described in Section 2.3. In Section

2.4, we present the results of simulations of overstable oscillations in a transonic

disk with a free inner boundary. We classify several types of global oscillation

modes produced in this flow, as well their dependence on the sound speed and

viscosity parameter of the disk. In Section 2.5 we examine trapped p-modes

in a disk with a reflecting boundary, first reproducing semi-analytic results for

an inviscid disk, then investigating the effect of viscosity as described by the

theory of viscous overstability. As part of this discussion (Section 2.5.3), we

present an unexpected result on overstable modes driven purely by viscosity in

the absence of GR effects, whose frequencies are higher than trapped p-modes.

We summarize our results and discuss their implications in Section 2.6.

2.2 Theory of Viscous Instability

The role of viscosity for the stability of thin accretion disks has been studied

extensively for several decades. As shown by Kato (1978) in his pioneering

work, viscosity can affect the disk stability through both thermal (affecting the

energy balance) and dynamical processes (by changing the angular momentum

balance). The former process is analogous to so called ‘ε-mechanism’ in stellar
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Figure 2.1: Regions of local viscous stability and instability in the propagation
diagram of axisymmetric (left) and non-axisymmetric p-waves. The ‘evanes-
cent’ regions correspond to the cases where D > 0, the ‘locally damped’ and
‘locally unstable’ regions correspond to positive or negative ωv, respectively.

pulsations. In that case, the instability arises as a consequence of an additional

increase in the pressure restoring force, due to viscous heat generation in the

compressed phase of the oscillations. In the later case, the instability comes from

the mechanical work that is done by the azimuthal component of the viscous

force on the fluid elements during the oscillations. To explore this mechanism,

it is sufficient to consider barotropic fluid, which we adopt in our work.

We consider a thin, two-dimensional disk described in polar coordinates

(r, φ) by velocity u = (ur, uφ), surface density Σ and height integrated pressure

P which obey the continuity and Navier-Stokes equations

∂Σ

∂t
+ ∇ · (Σu) = 0, (2.1)

∂u
∂t

+ (u · ∇) u = −
1
Σ
∇P − ∇Φ +

1
Σ
∇ · σ, (2.2)

where σ is the viscous stress tensor,

σ = η

[
∇v + v∇ −

2
3

(∇ · v) I
]
, (2.3)
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Φ = Φ(r) is the gravitational potential and η is the height integrated dynamic

viscosity coefficient that describes momentum transport due to turbulent mo-

tion of the fluid. In this section, it is sufficient to assume that both P and η are

functions of the surface density only, P = P(Σ) and η = η(Σ). The particular

forms of these functions will be specified later, when the numerical simulations

are carried out.

2.2.1 Subsonic Part of Disk and Trapped Modes

In absence of the viscosity (η = 0), the equations (2.1) and (2.2) admit a stationary

axisymmetric solution, that describes a purely rotating flow with the squared

angular velocity

Ω2 = Ω2
K +

c2
s

r2

d ln Σ

d ln r
, Ω2

K =
1
r

dΦ

dr
, (2.4)

where ΩK is the Keplerian angular frequency and cs = (dP/dΣ)1/2 is the sound

speed. Its contribution to the rotational velocity is negligible in thin disks giving

nearly Keplerian rotation, Ω ≈ ΩK.

The perturbations to this equilibrium, whose time and azimuthal depen-

dence is of the form of exp(imφ − iωt), obey the wave equation (e.g. Lai & Tsang

2009),

L̂0δh =

[
d2

dr2 −

(
d
dr

ln
D
rΣ

)
d
dr

+
2mΩ

rω̃

(
d
dr

ln
D

ΩΣ

)
−

m2

r2 −
D
c2

s

]
δh = 0

(2.5)

for the enthalpy perturbation δh = δP/Σ. Hereω and m are the angular frequency

and azimuthal wavenumber of the perturbation, ω̃ = ω − mΩ, D = κ2 − ω̃2 and

κ2 = r
dΩ2

dr
+ 4Ω2 (2.6)
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is the squared radial epicyclic frequency. The perturbation of the flow velocity

δu are given as

δur =
i
D

[
ω̃

d
dr
−

2mΩ

r

]
δh, δuφ =

1
D

[
κ2

2Ω

d
dr
−

mω̃
r

]
δh. (2.7)

The operator L̂0 is singular when D → 0 or ω̃ → 0. The first corresponds to

the Lindblad resonances and the second to the corotation resonance. While the

Lindblad resonances are not real singularities and represent turning points of

the waves, the waves may be absorbed at the corotation resonance, which may

lead to the instability or damping of the oscillations of the disk.

Introducing the viscosity changes both the equlibrium state and the dynam-

ics of the oscillations. The angular momentum transport causes a slow radial

inflow of the matter towards the central black hole in the stationary case. The

radial velocity ur of this inflow can be found by expanding the azimuthal com-

ponent of equation (2.2) up to the first order in η,

ur =
2Ω

r2κ2Σ

d
dr

(
r3η

dΩ

dr

)
. (2.8)

This expansion however breaks down close to ISCO, where κ → 0 and the flow

becomes transonic. The stability of this region of the disk is reviewed later in

this section and numerically examined in section 4.

In addition to a small change in the mean flow, the viscosity affects the os-

cillations through the perturbation of the viscous force δ(∇ · σ) that may do a

positive or negative work on the waves. Up to the first order in viscosity, the

perturbations of the disk are governed by the equation (see Appendix A.1)(
L̂0 + L1

v + L1
in

)
δh = 0, (2.9)

where L̂0 is the differential operator of the inviscid problem defined in equation

(2.5) and L̂1
in and L̂1

v are its first-order corrections due to the radial inflow in the
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stationary case and the action of the viscous force:

L̂1
in = iur

ω̃

D

[(
1 +

κ2

ω̃2

)
d3

dr3 −
D2

ω̃2c2
s

d
dr

]
, (2.10)

L̂1
v = −iν

ω̃

D

[(
4
3

+
κ2

ω̃2

)
d4

dr4 − 2qA
D
ω̃2

Ω

c2
s

d2

dr2

]
, (2.11)

where ν = η/Σ is the kinematic viscosity.

By substituting the local WKBJ ansatz, δh ∝ exp(ikr) we may recover the

formula of Kato (1978) for the local growth rate of the oscillations due to the

action of the viscous force,

δωv(r) = −iνk2
[
2
3

+
Ω2

ω̃2

(
κ2

2Ω2 − qA
)]
, (2.12)

where q = −d ln Ω/d ln r and A = d ln η/d ln Σ. Because q > 0, the last term reduces

the damping and in principle it can lead to an instability. A necessary condition

for mode growth [Im (δωv) > 0] is positive A, i.e. the shear viscosity coefficient

η increases with increasing density Σ on a timescale shorter than the oscillation

period (∼ 1/Ω). For a given oscillation frequency, we may separate the regions

of local instability or damping of the p-waves in the propagation diagram. This

is done in Figure 2.1.

A similar analysis in the case of the operator L̂in gives the correction due to

the radial inflow in the disk,

δωin(r) = −kur. (2.13)

The meaning of this result is straightforward; it is the Doppler shift between the

stationary observer at a fixed radius and an observer comoving with the fluid.

Hence, the inflow only slightly changes the real part of the frequency of the

oscillations without affecting their stability. The total frequency change is the

sum of the two contributions, δω(r) = δωv(r) + δωin(r).
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Similarly, we may derive a global change of the eigenfrequencies of the p-

modes trapped between two boundaries. A simple calculation presented in Ap-

pendix A.2 leads to the expressions

δωv,global =

∫
δωv(r)w(r)dr∫

w(r)dr
, δωin,global =

∫
δωin(r)w(r)dr∫

w(r)dr
, (2.14)

where

w(r) =
1
cs

ω̃
√
−D

. (2.15)

Hence, the effects of viscosity and radial inflow are just the average of the local

rates of equations (2.12) and (2.13) with the weight function w(r).

2.2.2 Transonic flow

The studies of the stability of the transonic regions of accretion disks were ini-

tiated by the work of Kato et al (1988a). By perturbing equations (2.1) and

(2.2) around a transonic stationary solution describing an isothermal accretion

disk, the authors identified two types of unstable axisymmetric perturbations.

The first type is essentially a generalization of the inertial-acoustic p-waves dis-

cussed in the previous subsection to the case of a nonzero radial flow velocity.

These modes are trapped between the disk inner edge (corresponding to the

sonic radius) and the radius of the inner Lindblad resonance. Consequently,

the frequency of these waves is always smaller than κmax, we note however, that

this limit is valid only in the case of the axisymmetric perturbations. Accord-

ing to Kato et al. (1988a), as the sonic radius acts only as a partial reflector for

the waves, the instability appears only for a sufficiently high viscosity when the

viscous driving overcomes the leakage of wave energy through the sonic radius.

The other type of instability appears only in the case of a transonic flow
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and represents a standing wave pattern localized around the sonic radius that

grows exponentially with time. Kato et al. (1988a) assumed so-called conven-

tional or ‘αp’-type viscosity, in which the rφ-component of the viscous stress

tensor is directly proportional to the pressure, σrφ = αp (contrary to our ‘dif-

fusive’ prescription for the viscosity, that relates pressure to the shear viscosity

coefficient η). They found that the instability occurs only for high enough val-

ues of α, when α ≥ u′c/Ωc, with u′c and Ωc being a radial velocity gradient and

orbital frequency of the flow at the sonic radius. They also noted that the same

condition is satisfied when the flow changes from being subsonic to supersonic

by passing through the nodal critical point. They speculated that the appear-

ance of this second type of instability is directly related to the topology of the

flow at the sonic radius. This idea was supported in subsequent studies: Kato

et al. (1988b) relaxed the assumption of isothermal flow by including the en-

ergy balance between viscous heating and radiative cooling and found that the

instability criterion coincides with the one for the nodal topology of the sonic

point. Later on, Kato et al (1993) examined a stability of the isothermal accretion

flows with the diffusive form of the viscosity similar to our work. In that case

the sonic point is always of the saddle type and consequently the authors found

that it is stable against this type of perturbation.

Based on these results we expect that possible instabilities of our flow arise

only due to propagating acoustic waves mentioned in the beginning of this sub-

section. In the following sections, we will examine numerically the conditions

for their growth as well as the spatial structure of the unstable modes.
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2.3 Numerical Setup

As in the previous section, we consider a thin disk described by velocity

u =
(
ur, uφ

)
, surface density Σ and pressure P which obey the Navier-Stokes

equations. It is subject to the “pseudo-Newtonian” (Paczyński & Wiita 1980)

gravitational potential

Φ = −
GM
r − rs

, (2.16)

where M is the mass of the central black hole and rs = 2GM/c2 is its

Schwarzschild radius. This potential mimics GR effects, having a Keplerian

orbital frequency and radial epicyclic frequency given by

ΩK =

√
GM
r3

(
r

r − rs

)
, κ = ΩK

√
r − 3rs

r − rs
. (2.17)

There is an innermost stable circular orbit (ISCO) defined by κ2 (rISCO) = 0, and a

radius at which the epicyclic frequency peaks, κ (rmax) = κmax =
(
9 − 5

√
3
)
ΩISCO,

which are located at rISCO = 3rs and rmax =
(
2 +
√

3
)

rs, respectively.

We adopt numerical units such that

rISCO = ΩISCO = 1, (2.18)

and define an “orbit” as one orbital period at rISCO (equal to 2π in numerical

units). We use a polytropic equation of state P = KΣΓ, which has the corre-

sponding sound speed cs =
√

ΓP/Σ. We define the parameter cs0 = cs (rISCO),

whose value we will refer to rather than that of the constant K, to which it is

directly related. We prescribe the kinematic viscosity of the fluid as

ν = αcsH, (2.19)

where H = cs/ΩK is the disk scale height (Shakura & Sunyaev 1973). Note that ν

is proportional to c2
s , so that ν (Σ) ∝ ΣΓ−1 or η (Σ) ∝ ΣΓ, giving A = d ln η/d ln Σ = Γ.

Therefore each simulation is defined by three parameters: cs0, Γ and α.
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The outer boundary is always located at r = 4, at which we fix Σ and uφ at

their initial values and impose ∂ur/∂r = 0. Adjacent to the outer boundary, we

implement a wave damping zone of width 1/3 (i.e., between r = 11/3 and r = 4)

in which a damping force (per unit mass), given by

fdamp = −
u − u0

τ
R (r) (2.20)

is applied (de Val-Borro et al. 2006). Here u0 = (rΩ0, 0), τ is a damping timescale

equal to the orbital period at the outer boundary, and R (r) is a parabolic func-

tion, which is equal to unity at r = 4 and reduces to zero at r = 11/3. The damp-

ing zone minimizes reflection of waves from the outer boundary and mimics an

outgoing wave boundary condition used in linear analysis of disk modes (e.g.,

Lai & Tsang 2009). We simulate two distinct physical setups which correspond

to two different inner boundary locations and their corresponding boundary

conditions, choosing either a free boundary at r = 2/3 (Section 2.4) or a reflecting

boundary at r = 1 (Section 2.5). The details and significance of these boundary

conditions are discussed in more detail in their corresponding sections. The ini-

tial conditions of the simulations always have ur = 0 everywhere, but the initial

surface density profile Σ (r) varies in the different sections of this paper. The or-

bital velocity uφ is always chosen to be initially in centrifugal balance (equation

2.4) given the surface density profile.

The Navier-Stokes equations are solved using the PLUTO code (Mignone et

al. 2007) with third-order Runge-Kutta time stepping, parabolic reconstruction

and a Roe solver on static polar grid with uniform spacing in both directions.

The standard resolution of the simulations is Nr × Nφ = 1024 × 256, so that the

radial direction has a spatial resolution of at least 300 per unit r (this varies

slightly with the location of the inner boundary), and modes with m ≤ 4 are

captured with at least 64 zones per azimuthal wavelength. The sensitivity of
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Label cs0 α rc u′c/Ωc κmax mΩISCO mΩISCO ± κmax

(a) 0.01 0.05 0.99 0.150 No No No
(b) 0.01 0.10 1.02 0.120 No 4 No
(c) 0.01 0.25 1.12 0.087 Linear 2 Yes
(d) 0.01 0.50 1.30 0.082 Nonlinear 1 Yes
(e) 0.02 0.10 1.01 0.170 No No No
(f) 0.02 0.25 1.17 0.109 No 1 Yes
(g) 0.02 0.50 1.69 0.116 Nonlinear No No
(h) 0.05 0.25 1.12 0.197 No No No
(i) 0.05 0.50 1.57 0.446 Nonlinear No No

Table 2.1: Summary of transonic disk simulations. The first three columns give
the name of the run and the value of parameters cs0 and α. The next two columns
give the numerically measured location of the sonic point rc and its dimension-
less stability quantity u′c/Ωc. The last three columns indicate whether or not
overstable oscillations of the three types described in Section 2.4.1 are present.
For the κmax type, we also indicate whether or not they are linear or nonlinear,
and if the mΩISCO type are present, we indicate which azimuthal number m is
dominant in the power spectrum.

our numerical results to the chosen resolution is addressed seperately for each

major results section (Sections 2.4 and 2.5).

2.4 Overstable Global Oscillations in Transonic Disks

For our transonic disk simulations, the inner boundary is placed at rin = 2/3, at

which an outflow boundary condition given by

∂Σ

∂r
=
∂u
∂r

= 0 (2.21)

is imposed. We choose as our initial condition

Σ ∝
r−

1
2

r − rs

1 − (
r

rin

)− 1
2
 , (2.22)

which is an approximate steady-state surface density profile consistent with

constant Ṁ and vanishing torque at rin, but it is not a solution for the transonic
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Figure 2.2: Surface density at t = 100 for runs with significant time variability.
The parameters corresponding to the alphabetical labels are given in Table 2.1.
Various features can be seen, including four-armed, two-armed and one-armed
spirals, as well as axisymmetric rings. The top two panels are zoomed in relative
to the other panels to show finer detail of the non-axisymmetric structure close
to the inner edge.
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Figure 2.4: The power spectrum |ũr|
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with power in discrete frequencies which are coherent across a range of r are
present in all cases. They can be seperated into modes with frequencies close to
multiples of ΩISCO (and their nonlinear splittings) with power concentrated near
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flow region interior to rISCO. From these initial conditions, the disk is evolved

for 100 orbits. We wait for it to settle into a quasi-steady state before analyz-

ing its variabilities. The parameters for various runs and their corresponding

key results are summarized in Table 2.1. Run (a), which has the longest vis-

cous timescale, is the slowest to reach a quasi-steady state, taking ∼ 60 orbits

(however, this is much less than the viscous timescale). Therefore we perform

all analysis in the last 30 orbits of each run, at which point all have reached a

quasi-steady state. Since we ignore the initial transient phase, we do not at-

tempt to characterize the growth process or linear behavior of any observed

oscillations. Instead, we focus on the properties of unstable oscillations which

have saturated at some (often large) amplitudes and which may have become

significantly nonlinear.

We use the following formalism to analyze the variabilities of the quasi-

steady, nonlinear phase of the simulations. We define the power spectrum |ũ|2,

where

ũ (r, ω) =
1

2π

∫ t2

t1
ur (r, 0, t) e−iωtdt (2.23)

is the Fourier transformed radial velocity and (t1, t2) = (70, 100). The power

spectrum gives a measure of the strength of the oscillations, along with their

frequencies and locations in the disk where they are most visible. We determine

the azimuthal number m associated with each frequency by decomposing the

radial velocity into components proportional to exp (imφ − iωt). Since, as we will

demonstrate, the oscillations are global (their frequencies are coherent across a

range of radii), we average this amplitude over all r. The resulting quantity,

ũm (ω) =
1

4π2 (rout − rin)

×

∫ rout

rin

∫ t2

t1

∫ 2π

0
ur (r, φ, t) e−(imφ−iωt)dφdtdr,

(2.24)

25



specifies the global power spectrum delineated by m. The spatial and tempo-

ral variability and propagation properties of the oscillations are examined by

plotting the surface density Σ at a fixed azimuthal angle (φ = 0) as a function of

radius r and time t.

For this section we restrict the equation of state to only the isothermal case,

Γ = 1, so that each run is characterized only by the parameters cs0 and α. The

parameters of the nine numerical runs (see Table 2.1) were chosen because they

lead to a variety of behaviors, producing overstable oscillations of several types

(to be described below) which are present or absent in various combinations.

For each sound speed cs0, there is a threshold value of the viscosity parameter α

below which no overstable oscillations are observed within the duration of the

run (100 orbits). Three of our runs, (a), (e) and (h), fall into this regime, leaving

six runs which show significant variabilities. The subsequent discussion focuses

only on these six interesting cases.

Figure 2.2 shows snapshots of the disk surface density Σ at t = 100 for the

runs that exhibit overstable oscillations. Figure 2.3 shows Σ at φ = 0 as function

of time and radius. Together they illustrate the spatial structure and wave prop-

agation properties of the modes. In runs (b), (c), (d) and (i), non-axisymmetric

waves with frequencies approximately multiples of ΩISCO propagate at small

radii (r . 1.2 for cs0 = 0.01, r . 1.7 for cs0 = 0.02). In runs (c), (d), (g) and (i),

axisymmetric waves with lower frequencies propagate at larger radii. In cases

in which both types of waves are present, there is a merging or winding-up of

non-axisymmetric waves into axisymmetric ones at intermediate radii.

Figure 2.4 depicts the power spectra, for a range of radial locations in the

disk, of the runs which exhibit overstable oscillations. In all cases, power is

26



sharply concentrated in discrete frequencies and present across a large range

of r, manifesting as narrow vertical strips in Figure 2.4. We therefore inter-

pret these as frequencies of coherent global modes, rather than local oscillations

whose properties vary with r. Since they are global, with frequencies indepen-

dent of location, we can justify the radial integration in equation (2.24), which

allows us to analyze their relative strengths globally, rather than locally. The m-

delineated power spectra are shown in Figure 2.5. Note that the absolute scale

of the quantity |ũm|
2 does not have a direct physical meaning, as it depends on

the radial integration range (which we choose as the entire computational do-

main, whose size is arbitrary). However the relative amplitudes, both between

different values of m and across multiple panels in Figure 2.5, give a meaningful

comparison of the power in the various modes. From these we see that run (b),

(c), (d) and ( f ) are dominated by m = 4, m = 2, m = 1 and m = 1 modes, respec-

tively. Runs (g) and (i) have very little power in non-axisymmetric modes, with

the majority of their power in axisymmetric (m = 0) modes, whose correspond-

ing |ũm| is not shown.

2.4.1 Classification of Oscillations

We classify the observed oscillation modes into three types. First, there is a

“κmax” type, which is axisymmetric (m = 0) and has a frequency approximately

equal to (for small cs0) or somewhat smaller than (for large cs0) the maximum

epicyclic frequency, κmax = 0.34. Under various conditions, this mode is either

linear or nonlinear. In the former case, its wave function is smooth and has a

small amplitude, and only the fundamental frequency is present in the power

spectrum. In the latter case, the wave function is sharp and large in amplitude,
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and many overtones (integer multiples of κmax) are present in the power spec-

trum. This behavior is analogous to that of a nonlinear oscillator with natural

frequency κmax. As the amplitude of the oscillation becomes large, nonlinear

effects introduce resonances at multiples of the natural frequency, and oscilla-

tions at these frequencies can also be driven to large amplitudes. The result is

the excitation of a series of harmonics of the frequency κmax. In the most ex-

treme examples of this nonlinearity [e.g. runs (d) and (g)], the power density

(see Figure 2.4) in the first three to four overtones is comparable to (less than,

but within an order of magnitude of) that of the fundamental frequency, and up

to ten overtone frequencies can be identified [run (g)].

The second type of mode is the “mΩISCO” type, which is non-axisymmetric

with azimuthal number m > 0 and frequency ω ≈ mΩISCO. These always ap-

pear in a series of successive m, and therefore represent a harmonic series of the

fundamental frequency (similar to the nonlinear effect seen in the κmax modes),

which is simply ΩISCO. However, the m with the largest power is not always 1,

we find cases in which it is 2 or 4. This manifests as a sharp, nonlinear m-armed

spiral in the disk.

The third type of mode is the “mΩISCO ± κmax” type, which has azimuthal

number m > 0 and frequency approximately mΩISCO ± ε, where ε is close to, but

sometimes less than, κmax. These are prominently present for moderate values

of α when cs0 is small [runs (c) and (d)], moderately present for a similar α at a

larger cs0 [run ( f )] and entirely absent for large α or large cs0 [runs (g) and (i)].

We suggest that these modes are a result of a splitting of the mΩISCO modes due

to a nonlinear coupling with the κmax modes, as these are the most fundamental

modes associated with the two “special” locations in the disk, rISCO and rmax.
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2.4.2 Dependence on Parameters

From our runs, we can extrapolate the dependence on the parameters cs0 and α

in determining power spectrum of overstable modes. For a given sound speed

cs0, we imagine slowly increasing the value of α, starting from a very small

value. A sufficiently small α produces no overstable oscillations, leading to a

steady-state axisymmetric flow with no variabilities. As α increases, there is a

threshold value at which mΩISCO type modes begin to appear. This threshold

value of α is larger for larger cs0. For example, the threshold is α & 0.05 for

cs0 = 0.01 and α & 0.1 for cs0 = 0.02. Once this threshold is reached, the dominant

mΩISCO mode initially involves large m, such as m = 4 seen in run (b). As α is

further increased, the dominant m of these modes becomes smaller, for example

m = 2 in run (c) and m = 1 in run (d). As α increases further, beyond a second

threshold value, axisymmetric κmax modes become present, while the mΩISCO

modes may still be present with comparable power, as in run (d), or may be

suppressed, such that only κmax modes are present, as in runs (g) and (i). In

between the two threshold values of α, it is possible for the mΩISCO ± κmax modes

to be present, sometimes in the absence of strong κmax modes, such as in runs (c)

and ( f ), probably due to a nonlinear coupling between the two other types of

modes.

As reviewed in Section 2.2, Kato et al. (1988a) derived a criterion a for a vis-

cous pulsational instability at the sonic point rc, defined by ur (rc) = cs, of a tran-

sonic flow. According to this criterion, the sonic point is unstable if α > u′c/Ωc,

where uc and Ωc are the radial velocity and angular velocity at the critical point

and the prime denotes a radial derivative. Note that these quantities them-

selves depend on α (and cs0) in a self-consistent solution of the flow. While this
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instability criterion may not be exactly applicable in our simulations (due to our

‘diffusive’ rather than ‘αP’ viscosity prescription), we find it is still a useful di-

agnostic. Using azimuthally-averaged and time-averaged profiles of ur and uφ,

we measure the location of the sonic point rc and the value of u′c/Ωc for each

run, which are presented in Table 2.1. From these we can see that the Kato et al.

criterion successfully indicates whether or not overstable oscillations are found,

with the exception of run (b), for which a weak m = 4 mode is found even

though the criterion is not strictly satisfied.

The results of our simulations of transonic disks can be most directly com-

pared to those of Chan (2009), who also examined the role of viscosity in height-

integrated disks (with a more general equation of state), and found evidence for

viscous excitation of global axisymmetric and non-axisymmetric p-modes of the

types found in our simulations. Our work extends Chan’s analysis by delineat-

ing the different regimes (ranges of cs0 and α) in which particular combinations

of these modes are excited, and highlights the possibility of extreme nonlinear-

ities and the existence of the mixed mΩISCO ± κmax type modes. The driving of

the κmax modes at large α is consistent with the 1D (height-integrated and ax-

isymmetric) simulations of Milsom & Taam (1996) and Mao et al. (2009), as

well as the 2D (axisymmetric) simulations of O’Neill et al. Note that the afore-

mentioned studies are unable to capture the global spiral modes seen in our

simulations due to their assumptions of axisymmetry.
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2.4.3 Resolution Study

In order to determine the robustness and dependence on grid resolution of the

features seen in our transonic disk simulations, we perform run (c) with both

half the standard resolution in both dimensions, Nr × Nφ = 512 × 128, denoted

(c)half and double the standard resolution Nr × Nφ = 2048 × 512, denoted (c)double.

The surface density at t = 100 and the m-delineated power spectra for these

runs are shown in Figure 2.6. It can be seen from these that the runs are remark-

ably similar to one another, as well as to the standard resolution run, therefore

we conclude that the observed features are not sensitive to resolution and that

the standard resolution provides sufficient convergence. Since run (c) has the

largest Reynolds number Re = α−1c−2
s0 of the runs which exhibit all three types of

oscillations, we conclude that our other runs are at least as well resolved as (c)

under the standard resolution.

2.5 Overstable Global Oscillations in Truncated Disks

We now investigate the behavior of trapped p-modes in a disk truncated at

its inner edge by an impermeable wall. As noted before, such an inner disk

edge mimics a magnetospheric boundary. We place the inner boundary at rISCO

and impose a reflecting boundary condition with ur = 0 (imposed by anti-

symmetrizing ur across the boundary), and with all other variables fixed at their

equilibrium values. In general, viscous forces induce a radial drift, which would

lead to accumulation of mass at the inner boundary. We avoid this by initializ-

ing the surface density with a profile such that there is no radial drift (equation
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m (ωr, ωi)semi−analytic ωr ωi,α=0 ωi,α=0.01 ωi,α=0.05

cs0 = 0.02, Γ = 1 2 1.78, 0.0422 1.78 0.0453 0.0314 0.0266
3 2.69, 0.0528 2.69 0.0579 0.0426 0.0235
4 3.62, 0.0607 3.63 0.0646 0.0478 0.0205

cs0 = 0.02, Γ = 4/3 2 1.78, 0.0408 1.78 0.0434 − −

3 2.69, 0.0512 2.69 0.0550 − −

4 3.62, 0.0591 3.63 0.0611 − −

cs0 = 0.05, Γ = 1 2 1.62, 0.0588 1.62 0.0600 0.0526 0.0211
3 2.48, 0.0716 2.47 0.0716 0.0642 0.0376
4 3.36, 0.0800 3.36 0.0776 0.0704 0.0479

cs0 = 0.05, Γ = 4/3 2 1.62, 0.0553 1.61 0.0552 − −

3 2.48, 0.0682 2.47 0.0665 − −

4 3.36, 0.0763 3.36 0.0724 − −

Table 2.2: Summary of trapped p-mode simulations. From left to right, the
columns give the equation of state (cs0 and Γ), azimuthal mode number m,
the semi-analytic mode frequency ωr and growth rate ωi (zero viscosity), the
numerically-calculated mode frequency, and the numerically-calculated growth
rate for α = 0 and several non-zero values of α. The blank entries correspond to
runs for which p-modes were not observed due to a second type of instability,
as described in Section 2.5.3.
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2.8), given by

Σ (r) ∝
[
r−2

(
r − rs

3r − rs

)]1/Γ

. (2.25)

This ensures that the azimuthally-averaged surface density does not change

significantly as long as the perturbations to this equilibrium remain small (in

principle this may be violated when the perturbation amplitudes become large

and the modes are nonlinear). This initial surface density is modified by small

(δΣ/Σ . 10−6) random perturbations which serve as seeds for the growth of p-

modes. They lead to the growth of many modes with many different values of

m, the frequencies and growth rates of which can be measured independently

from a single run (the accuracy of this approach is examined in Section 2.5.4).

Each mode is assumed to have a complex frequency ω = ωr + iωi where ωr

and ωi (both real) are the mode frequency and growth rate. The amplitude of ra-

dial velocity perturbations with azimuthal number m at radius r are determined

numerically by computing

um (r, t) =
1

2π

∫ 2π

0
ur (r, φ, t) e−imφdφ. (2.26)

By fitting a straight line to log |um| in the linear growth phase, we can determine

the growth rate of each mode. The frequencies are determined using a power

spectrum delineated by azimuthal number m (equation 2.24). Some examples

of analysis using these tools will be shown in the subsequent discussion of the

results of the simulations.

Figure 2.7 shows the evolution of |um| (for m = 3 and m = 4, evaluated at a

representative radius) for a pair of typical runs. Initially there is a linear growth

phase lasting 20 − 40 orbits, in which the amplitudes grow exponentially. The

fitted curves used to measure the growth rates are shown. After the departure of

the mode amplitudes from simple exponential growth, we refer to the rest of the

36



evolution as the nonlinear phase. Example power spectra are shown in Figure

2.8, showing the mode frequencies in both the linear and nonlinear phases.

2.5.1 Inviscid Case

We first perform simulations of an inviscid disk (α = 0). Since the complex

frequencies of the trapped p-modes can be compared to linear theory (Lai &

Tsang 2009), these serve as test cases for verifying the robustness and accuracy

of the simulations before we investigate the effects of viscosity (see Fu & Lai

2013 for a more detailed analysis of numerical simulations of trapped p-modes

in inviscid disks). We choose four equations of state, with cs0 = 0.02 or cs0 = 0.05

and Γ = 1 or Γ = 4/3. The main results, numerically measured frequencies and

growth rates of the modes, are presented in Table 2.2. For runs with cs0 = 0.02,

the numerical growth rates agree with those computed from linear theory to

better than 10%, while for cs0 = 0.05 they agree to better than 5%, with some

cases in even better agreement. In all cases the numerical mode frequencies

agree with linear theory to better than 1%, and these frequencies differ very

little between the linear and nonlinear phases (see Figure 2.8). See Section 2.5.4

for a resolution test demonstrating that these results are converged. Having

accurately captured the properties of the inviscid trapped p-modes, we move

on to exploring the effects of viscosity in the next subsection.
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2.5.2 Viscous Effects

We carry out simulations using the same parameters described above but now

with non-zero viscosity, choosing α = 0.01 and α = 0.05. Our analysis will focus

on the modification of mode growth and saturation properties due to viscous

effects. We separate this discussion into two parts based on the value of the

polytropic index, as the effects of viscosity are different for Γ = 1 and Γ = 4/3.

The effect of viscosity on the mode growth rates are summarized in Table

2.2. We find qualitatively different results depending on the value of the poly-

tropic index Γ. For Γ = 1, the growth rates of all modes are reduced compared

to the inviscid case. For cs0 = 0.05, the difference in growth rate due to viscosity

δων = ωi − ω
(α=0)
i , is approximately proportional to α, as expected theoretically

(equation 2.12). This is not the case for cs0 = 0.02, for which such an extrapo-

lation of ωi based on the α = 0.01 case would imply a negative value of ωi for

α = 0.05 (and thus the modes would not be overstable), which is not what we

find. More importantly, the linear analysis of viscous effects predicts enhanced

growth rates, rather than the diminished ones measured numerically. This in-

dicates that the estimate of the viscous effect on the growth of global modes

(equation 2.14) is inaccurate, perhaps due to dynamics of the corotation region

which are neglected in equation (2.14).

The saturation behavior of the the modes in the nonlinear phase is also af-

fected by viscosity. Figure 2.7 shows that while in the inviscid case, the various

um continue to grow slowly after the linear phase before saturating at larger

amplitudes, with viscosity they decrease or level off after the linear phase, re-

maining somewhat steady at a relatively small amplitude. This effect can also

be seen in Figure 2.9, which shows that when viscosity is included, the disk
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perturbations remain remarkably similar to the linear phase in appearance dur-

ing the nonlinear phase, unlike the inviscid case for which the nonlinear phase

looks qualitatively different than the linear phase. Therefore it appears that vis-

cous forces ultimately suppress the mode amplitudes enough to prevent any

significant nonlinear effects from occurring.

Our simulations with reflective inner boundary yield unexpected results for

Γ = 4/3. Unlike the case of Γ = 1 for which the overstable p-modes behave

similarly with non-zero α, albeit with reduced growth rates, when Γ = 4/3 we

find no trace of the trapped p-modes. Instead, the power spectrum for these

runs shows oscillations with frequencies approximately equal to mΩISCO. For

these runs, the evolution of |um| does not show clean exponential growth as the

p-modes do, but rather a sharp initial rise to a significant amplitude followed

by slow incoherent growth. The amplitude of these oscillations eventually be-

comes unphysically large with radial velocities much greater than cs0. As the

behavior of these unexpected modes is drastically different from the original

p-modes, we forego detailed analysis of these runs. This highly unstable unex-

pected behavior may be the result of the combined effects of overstability due

to GR (resulting from the smallness of κ/Ω and increased q) and due to viscos-

ity (resulting from large A), both of which enhance the growth rate as given in

eq. (2.12). Since we are interested in the viscous effect, in Section 2.5.3 we will

isolate it by modifying the numerical setup to simulate a disk with a pure New-

tonian 1/r potential, to see if this behavior persists in a simple way that allows

for a concrete analysis.
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Figure 2.10: Evolution of |um| at r = 1.05 for Newtonian disk with reflective
inner boundary. The m = 1 and m = 2 components are shown, along with
exponential fits used to determine growth rates, for two values of α. The growth
rates increase with increasing α, in qualitative agreement with the theory of
viscous overstability.

2.5.3 Viscosity-Driven Boundary Modes in Newtonian Poten-

tial

We wish to determine whether or not the growth of the new modes which over-

whelm the p-modes is due to a purely viscous effect which can operate in the

absence of GR effects. To this end, we perform simulations using the same setup

as described at the beginning of this section, but replace the pseudo-Newtonian

gravitational potential with a pure Newtonian potential, Φ = −GM/r. Under

this potential there is no longer an ISCO, so the location of the inner bound-

ary no longer has any physical significance, and we simply denote it as rin.

The corresponding boundary condition, as in the beginning of this section, is
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Figure 2.13: Radial velocity of boundary modes in Newtonian disks in the linear
and nonlinear phase.

m ωr ωi

α = 0.01 1 1.05 0.0389
2 2.00 0.0471
3 2.99 0.0488
4 3.98 0.0488

α = 0.02 1 1.01 0.0519
2 2.02 0.0692
3 3.01 0.0743
3 4.00 0.0744

Table 2.3: Frequencies and growth rates of boundary modes.
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reflective with ur = 0. We choose four sets of parameters, using cs0 = 0.1

and (Γ, α) = (1, 0) , (1, 0.01) , (4/3, 0) , (4/3, 0.01). Due to the larger sound speed

used, and therefore larger radial wavelengths, we reduce our resolution to

Nr × Nφ = 512 × 128.

We observe no growing oscillations for any of these runs except for (Γ, α) =

(4/3, 0.01), confirming that the anomalous modes observing in Section 2.5.2 can

be attributed purely to viscous effects (that is, requires α > 0 and Γ > 1) and

do not depend on GR effects. We therefore performed an additional run with

(Γ, α) = (4/3, 0.02) to probe their dependence on α. Figure 2.10 shows the evolu-

tion of the lowest m mode amplitudes (represented by |um| at r = 1.05), showing

their exponential growth at a rate which increases with α (see Table 2.3 for com-

plete list of frequencies and growth rates), as well as their relatively flat satura-

tion amplitude consistent with the the viscous effect on mode saturation seen in

Section 2.5.2. Figure 2.11 shows the power spectrum for these modes, indicating

that they are global, with power in discrete frequencies across a range of radii.

This justifies the use of eq. (2.24) to produce a radially integrated m-delineated

power spectrum, as shown in Figure 2.12. From this we see that in the non-

linear phase, the modes retain approximately the same frequencies as in the

linear phase, but with broader power spectra peaks and the presence of other

sub-dominant peaks at new frequencies. The morphology of the two phases is

shown in Figure 2.13. Note that the linear phase bears some resemblance to that

of the p-modes (compare to Figure 2.9), while the nonlinear phase appears very

different, having a more complex appearance.

These modes may be related to the interface modes studied by Tsang & Lai

(2009b) and Fu & Lai (2012), who considered a Keplerian disk in contact with a

43



α (ωr, ωi)half (ωr, ωi)standard (ωr, ωi)double

0 1.79, 0.0396 1.78, 0.0419 1.78, 0.0423
0.01 1.77, 0.0301 1.76, 0.0315 1.76, 0.0317

Table 2.4: Frequency and growth rate of m = 2 trapped p-mode for (cs0,Γ) =

(0.02, 1) with initial m = 2 perturbation for half, standard and double resolution
runs.

uniformly rotating cylinder (for example, a magnetosphere), which is similar to

the setup we consider. Their results indicate that modes with frequencies close

to mΩin can be overstable due to the corotation resonance effect. In our case, they

may not be intrinsically overstable but are only driven by viscous forces which

can act in phase with the oscillations, by having a sufficiently large A parameter.

A qualitative description of this phenomenon is as follows. In our simulation,

the disk is initialized with a surface density for which viscous forces induce zero

radial drift. However, a small perturbation to this equilibrium leads to a non-

zero ur, which leads to a radial oscillation at the local epicyclic frequency (which

is simply equal to the orbital frequency Ω in a Newtonian potential). When ma-

terial close to the inner solid boundary is pushed inward due to this oscillation,

it is compressed, leading to a stronger viscous forces, which act as an additional

restoring force (in addition to gravity which is producing the epicyclic motion).

In this way, the restoring force increases with the amplitude of the oscillation,

leading to overstability.

2.5.4 Resolution Study

As in Section 2.4.3, we perform two resolution test runs with half (512×128) and

double (2048 × 512) the standard resolution, for the case (cs0,Γ, α) = (0.02, 1, 0).

These runs also differ from the standard run in that the initial density pertur-
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bations are proportional to cos (2φ), so that the m = 2 mode is isolated. This

allows us to test the accuracy of measuring mode frequencies and growth rates

for modes of multiple m from an initially random perturbation, as is done in our

standard runs. The results are shown in Table 2.4. We see that with increasing

resolution, the numerically measured growth rate converges on the result from

linear theory, agreeing to better than 1% for the double resolution run. Addi-

tionally, we see that a standard resolution run with a pure m = 2 initial pertur-

bation reproduces the growth rate of this mode more accurately than a run with

random perturbations, as used in Section 2.5.2. However, the difference is small

enough to justify the use of the random perturbation approach, which allows us

to capture multiple modes from single runs. We note that since this resolution

test was performed for our smallest sound speed, for which the modes have the

smallest radial wavelengths, these tests provide a lower limit on our accuracy,

as we expect the longer wavelength modes associated with our larger sound

speed to be better resolved by the same resolution. We also perform the same

test using (cs0,Γ, α) = (0.02, 1, 0) to ensure that viscous effects are not sensitive to

resolution. For this case we achieve similarly excellent convergence of growth

rate with increasing resolution. Additionally, the discrepancy between the run

with random perturbations and the one with m = 2 perturbations is smaller than

the inviscid case.

2.6 Discussion

We have carried out viscous hydrodynamical simulations of black hole (BH)

accretion disks to determine how viscosity may drive global oscillation modes

in the disk. Analytical considerations (see Section 2.2) indicate that, depend-

45



ing on the viscosity law (particularly how viscosity scales with density) and the

background disk flow properties, various global oscillations with different az-

imuthal wavenumbers may be excited. We considered two types of accretion

flows. The first involves disks with transonic radial inflow across the innermost

stable circular orbit (ISCO) of the BH, and the second involves disks truncated

at an inner edge and with a free outer boundary at large distance.

Our simulations on transonic disks (Section 2.4) follow previous works in

one dimension (Milsom & Taam 1996) and in two or three dimensions (O’Neill

et al. 2009; Chan 2009). We show that, depending on the viscosity parameter α,

global oscillations with different azimuthal wavenumbers m, and with frequen-

cies close to κmax, mΩISCO or their linear combinations (where κmax and ΩISCO are

the maximum radial epicyclic frequency and the orbital frequency at the ISCO,

respectively) are excited. In general, as α increases above a critical value αcrit1

(∼ 0.1 − 0.25 for isothermal disks), non-axisymmetric modes (typically m = 4)

first develop, then axisymmetric modes develop above a second critical value

αcrit2 (∼ 0.5). We propose that these modes are the result of viscous overstabil-

ity, possibly combined with an effect related to instability of the sonic point,

although the theory of the latter is not strictly applicable in our simulations.

Our simulations on truncated disks (Section 2.5) extend previous semi-

analytic works on overstable inertial-acoustic modes (p-modes) driven by coro-

tation resonance in non-magnetic disks (Lai & Tsang 2009; Tsang & Lai 2008,

2009b; Horak & Lai 2013) and magnetic disks (Fu & Lai 2009; 2011), on

magnetosphere-disk interface modes (Tsang & Lai 2009a; Fu & Lai 2012), and

numerical studies of nonlinear p-modes (Fu & Lai 2013). We find that the

growth rates of overstable p-modes are reduced by viscosity in isothermal disks,

46



while for other equations of state (and corresponding viscosity laws), they are

suppressed due to the excitation of a different class of modes with frequencies

ω ≈ mΩin, which are related to magnetosphere-disk interface modes.

Obviously, our 2D hydrodynamical disk models do not capture various com-

plexities (e.g., magnetic field, turbulence and radiation) associated with real BH

accretion disks. Much progress in numerical General Relativistic Magnetohy-

drodynamic (GRMHD) simulations of BH accretion disks has been made in the

past decade, but much work remains to understand the complex phenomenol-

ogy of BH X-ray binaries (e.g., Remillard & McClintock 2006; Done et al. 2007;

Belloni et al. 2012). Several recent simulations have revealed quasi-periodic

variabilities of various fluid variables, but the connection of these variabilities

to the observed HFQPOs is far from clear (e.g., Henisey et al. 2009; ONeill et al.

2011; Dolence et al. 2012; McKinney et al. 2012; Shcherbakov & McKinney 2013).

Our simulations, although based on highly simplified disk models, demonstrate

that under appropriate conditions, various global oscillation modes can grow

to nonlinear amplitudes with well-defined frequencies. We emphasize that our

height-integrated treatment cannot capture modes with dependence on vertical

structure (g-modes and c-modes), which may be present in 3D simulations. The

properties and excitation of the p-modes considered in this paper may also be

modified in a fully 3D approach.

It is of interest to compare the frequencies of our simulated modes to those

of observed HFQPOs in X-ray binaries (Remillard & McClintock 2006; Belloni

et al. 2012), particulary the three systems whose BH spins are constrained using

the continuum-fitting method (see Narayan & McClintock 2012 and references

therein). These considerations indicate that the frequencies of the HFQPOs are
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smaller than the ISCO frequency, therefore they are unlikely to be explained by

any non-axisymmetric modes with ω & ΩISCO. However, this does not rule out

the axisymmetric κmax modes which have lower frequencies. We note that we

have not addressed the mechanism by which disk oscillations may manifest as

variabilities in X-ray flux, which affects the observability (or lack of observabil-

ity) of any oscillations that occur in the disk.

Although our simulations cannot be directly compared with observations,

some tentative conclusions can be drawn. The thermal (high-soft) state of BH

X-ray binaries may be approximately described by the transonic disk model (e.g.

Done et al. 2007). Our simulations show that such a disk does not allow trap-

ping of p-modes, but can excite global κmax-waves or mΩISCO-waves when the

viscosity parameter α is sufficiently large. Since no significant HFQPOs are ob-

served in the thermal state of X-ray binaries, our simulations provide an upper

limit on the effective disk viscosity parameter of α . 0.5.

The physical nature of the intermediate state (or “steep power law state”) of

BH X-ray binaries, when HFQPOs are observed, is currently uncertain (Done et

al. 2007; Oda et al. 2010). Since episodic jets are produced in this state, large-

scale magnetic fields likely play an important role (e.g., Tagger & Varniere 2006;

Yuan et al. 2009; McKinney et al. 2012). When magnetic fields advect inwards

in the accretion disk and accumulate around the BH (e.g. Bisnovatyi-Kogan &

Ruzmaikin 1974, 1976; Igumenshchev et al. 2003; Rothstein & Lovelace 2008),

a magnetosphere may form. The truncated disk model studied in this paper

may mimic the disk outside the magnetosphere. Our calculations show that

overstable p-modes (driven by corotation resonance) can be trapped in the in-

ner disk, but their growth rates are typically reduced by disk viscosity. More
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importantly, with increasing α and more general equation of state, a new series

of global waves can be excited at the disk boundary (see Tsang & Lai 2009a; Fu

& Lai 2012; McKinney et al. 2012).
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CHAPTER 3

ROSSBY WAVE INSTABILITY AND LONG-TERM EVOLUTION OF

DEAD ZONES IN PROTOPLANETARY DISKS

3.1 Introduction

The transport of angular momentum is a central problem in the evolution of

protoplanetary disks. The magnetorotational instability (MRI; Balbus & Hawley

1991, 1998) in magnetized Keplerian disks can sustain turbulence which effec-

tively transports angular momentum, provided that the disk material is suffi-

ciently ionized. This condition is thought to be met in the inner disk (. 0.1− 1.0

AU), due to thermal ionization, and in the outer disk (a few to & 10’s of AU),

due to irradiation by high energy photons and cosmic rays. At intermediate

radii, the disk is cold and and weakly ionized, producing an MRI-inactive “dead

zone” (DZ) in which turbulence is significantly suppressed in the disk mid-

plane, although thin surface layers may remain turbulent (Gammie 1996; see

Armitage 2011 for a review). The spatial extent of the DZ and its level of resid-

ual turbulence depend on many factors. These include the ionization fraction,

which is affected by the abundance of dust grains (e.g., Sano et al. 2000; Desch &

Turner 2015) and shielding of cosmic rays by stellar winds (Cleeves et al. 2013),

the role of non-ideal MHD effects, such as Ohmic diffusion, ambipolar diffu-

sion, and Hall drift (Bai & Stone 2013; Bai 2013, 2014a, 2014b; Lesur et al. 2014;

Simon et al. 2015; see Turner et al. 2014 for a review), and the direct interaction

of the magnetized stellar wind with disk surface layers (Russo & Thompson

This chapter is adapted from Miranda, Lai, & Méheut (2016).
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2015).

In the absence of MRI-driven turbulence, one or more alternative angular

momentum transport processes must operate in order to allow protoplanetary

disks to evolve in accordance with their typical observed lifetimes and accre-

tion rates (a few Myr and 10−8 M�/yr, e.g., Hartmann et al. 1998; Haisch, Lada

& Lada 2001). Several such mechanisms have been proposed, such as gravi-

tational instability (e.g., Lodato & Rice 2004; Rafikov 2015), disk winds (e.g.,

Bai & Stone 2013), baroclinic instability (e.g., Klahr & Bodenheimer 2003), and

vertical shear instability (e.g., Urpin & Brandenburg 1998). These hydrodynam-

ical instabilities may produce locally correlated velocity fluctuations, leading

to enhanced effective viscosity (Balbus & Papaloizou 1999). In these cases, the

transport of angular momentum does not necessarily result from turbulence,

but instead may be due to large-scale structures.

A promising mechanism for reviving the DZ is the Rossby wave instability

(RWI), a global, non-axisymmetric instability which arises at “bumps” in Kep-

lerian disks (Lovelace et al. 1999; Li et al. 2000; Méheut et al. 2010, 2012a, 2012b,

2013; see review by Lovelace & Romanova 2014). More specifically, RWI is as-

sociated with narrow radial minima of vortensity (vorticity divided by surface

density), and leads to growth of vortices, which then merge into a single vortex

(Li et al. 2001). The anticyclonic rotation (i.e., opposite to the bulk disk rotation)

of the resulting vortex prevents its destruction by Keplerian shear, allowing it

to potentially have a long lifetime (e.g., Godon & Livio 1999).

The sharp gradients in viscosity at DZ edges1 naturally produce RWI-

1When angular momentum transport in the the DZ is suppressed by Ohmic diffusion (e.g.,
Gammie 1996; Fleming & Stone 2003), the abrupt onset of MRI at a threshold resistivity level
ensures that the gradient of effective viscosity is sharp, even when that of the underlying ion-
ization/resistivity is not (Lyra et al. 2015). It is unclear whether or not the DZ has a similarly
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unstable vortensity profiles. Vortices and associated spiral density waves pro-

duced by the RWI create fluid stresses that transport angular momentum, which

can revive the DZ (Varnière & Tagger 2006; Lyra et al. 2009b; Lyra & Mac Low

2012; Regály et al. 2012). Further, the low viscosity DZ is a favorable loca-

tion for the production of vortices, since viscosity can inhibit the RWI (Lin 2014;

Gholipour & Nejad-Asghar 2014), and influence the long-term survival of vor-

tices (Fu et al. 2014a; Zhu & Stone 2014). In this paper, we examine the role

of RWI and vortices in the evolution of disks with DZs, building on existing

work by considering both the inner and outer DZ edges together (especially in

the case when they are close to each other), and by focusing on the long-term,

quasi-steady behavior of the disk.

Anticylonic vortices, such as those produced by RWI, may play a role in

planet formation due to their ability to trap dust particles (Barge & Somme-

ria 1995; Godon & Livio 2000; Tanga et al. 1996; Lyra et al. 2009b; Méheut et

al. 2012c; Lyra & Lin 2013; Zhu & Stone 2014), which may produce the condi-

tions needed for the formation of planetesimals (see review by Chiang & Youdin

2010). However, feedback on the gas by the accumulated dust particles may

subsequently destroy the vortex (e.g., Chang & Oishi 2010; Méheut et al. 2012c;

Fu et al. 2014b). Recent observations of transitions disks (disks with central

holes in dust emission, see review by Espaillat et al. 2014) show strong asym-

metries in mm-dust emission (e.g., van der Marel et al. 2013; Casassus et al.

2013; Isella et al. 2013), which could possibly be explained by dust trapping

in vortices. These vortices may be produced at DZ edges (e.g., Regály et al.

2012), or at the edges of gaps opened by planets (e.g., Zhu & Stone 2014). In

the simulations presented in this paper, novel asymmetries are produced by the

sharp edge when other non-ideal MHD effects or disk winds play a significant role.
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gas dynamics associated with the presence of a DZ. Since we do not follow the

dynamics of dust particles, which are coupled to the gas through aerodynamic

drag, we cannot make concrete predictions about the resultant dust morpholo-

gies. However, some qualitative features can be extrapolated to the behavior of

dust, such as azimuthal symmetries, and the location of features relative to the

position of the DZ.

It has been suggested that the presence of a DZ may lead to episodic ac-

cretion. In this scenario, accumulation of mass in the DZ triggers local gravi-

tational instability driven turbulence, which heats the DZ and briefly triggers

MRI, causing an accretion outburst, before cooling and repeating the cycle (e.g.,

Armitage et al. 2001; Zhu et al. 2010a, 2010b; Martin & Lubow 2011, 2014).

This mechanism has been used to explain the outburst behavior of FU Orionis

systems. The majority of work on this topic has used one-dimensional models

(with some exceptions, e.g., Bae et al. 2014), which neglect non-axisymmetric

effects. In this work, we show that, as long as the accretion rate is not too high,

vortices produced by the RWI (which is explicitly non-axisymmetric) can gen-

erate fluid stresses which facilitate steady, non-episodic accretion through the

DZ. We place a limit on the factor by which the gravitational stability parameter

(Toomre Q) is reduced in the DZ compared to a steady-state disk with no DZ.

In this paper, we give considerable attention to narrow DZs, for which the

radial extent of the DZ is smaller than its distance from the central star. As we

show, this configuration leads to large fluid stresses and produces novel mor-

phologies, including unusual vortex shapes and azimuthal symmetries (mode

numbers other than m = 1). These features are the result of coherent oscillations

of the entire DZ. By contrast, for wide DZs, each edge behaves independently,
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and the RWI evolves toward the familiar m = 1 symmetry (e.g., Méheut et al.

2012b), producing a much smaller Reynolds stress in the DZ. Estimates of the

extent of the DZ in realistic disks are highly uncertain, and range from very

narrow, as described here, to highly extended. Viscosity profiles resembling

our parameterized DZs (i.e., regions with reduced viscosity relative to their sur-

roundings) may be present near or in between ice lines, where there are signifi-

cant changes in dust grain abundance, on which the strength of MRI turbulence

depends sensitively (e.g., Kretke & Lin 2007; Bitsch et al. 2014). Therefore, there

are plausible physical conditions in protoplanetary disks which may produce

the DZ configurations modeled in this paper.

The main goal of this paper is to study the evolution of DZs using global,

long-term hydrodynamic simulations. We find three main results. Disks with

DZs evolve toward quasi-steady states, in which steady, non-episodic accretion

is partially facilitated by fluid stresses produced by vortices and spiral den-

sity waves resulting from the RWI. We show that narrow DZs produce large

Reynolds stresses, with only moderate surface density enhancements in the DZ,

so they are unlikely to experience gravitational instability unless the accretion

rate is high. We also present novel gas disk morphologies produced by the RWI

in DZs.

The outline of this paper is as follows. In Section 3.2, we describe the the

setup of our simulations. In Section 3.3, we present a detailed analysis of a

canonical run, which demonstrates our main results. We present a suite of sim-

ulations which systematically explore the effects of varying the DZ parameters

in Section 3.4. Finally, we discuss these results and conclude in Section 3.5. In

the Appendix, we present a linear calculation of how viscosity affects the RWI.
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3.2 Setup

We consider a 2D (height-integrated) disk described by surface density Σ and

velocity u =
(
ur, uφ

)
, with a radial extent of rin = 1 to rout = 12. It experiences a

gravitational potential (per unit mass) Φ = −GM∗/r, where M∗ is the mass of the

central star, so the Keplerian orbital frequency is ΩK = (GM∗/r3)1/2. We adopt a

locally isothermal equation of state P = c2
s (r) Σ, where P is the height-integrated

pressure, and

cs (r) = cs0

(
r

rin

)−1/2

(3.1)

is the radially-dependent sound speed. The scale height of the disk, H = cs/ΩK,

is proportional to r, so that the aspect ratio h = H/r is constant. The kinematic

viscosity is prescribed by

ν = αcsH. (3.2)

The dimensionless viscosity parameter α is a function of r, given by

α = α0 fα (r) , (3.3)

where fα (r), which describes the shape of the DZ, is given by

fα (r) = 1 +
1
2

(1 − εDZ)
[
tanh

(
r − rODZ

∆rODZ

)
− tanh

(
r − rIDZ

∆rIDZ

)]
. (3.4)

The meaning of the parameters are as follows: rIDZ and rODZ are the inner and

outer edges of the DZ, α0 is the value of α in the active zones (r < rIDZ and

r > rODZ), εDZ is the factor by which α is reduced in the DZ (i.e., α = εDZα0

in the DZ), ∆rIDZ and ∆rODZ are the widths of viscosity transitions at the inner

and outer DZ edges. These, along with the aspect ratio h, fully describe each

simulation. Unless otherwise stated, time is expressed in units of the Keplerian

orbital period at rin, Pin = 2π/Ωin.
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3.2.1 Initial Conditions

The initial surface density (in code units) is

Σ = r−1/2, (3.5)

which satisfies the steady state condition Σν = constant in the active zones (α =

α0), but not in the DZ, which would require Σ to be larger by a factor of ε−1
DZ. The

disk is initially in centrifugal balance with uφ = rΩ0, where

Ω2
0 = Ω2

K +
c2

s

r2

(
d ln Σ

d ln r
+

d ln c2
s

d ln r

)
, (3.6)

and initially ur = 0 everywhere. Non-axisymmetric instabilities are seeded by

random perturbations (i.e., they have no preferred azimuthal symmetry) to Σ,

with amplitude δΣ/Σ . 10−6.

3.2.2 Boundary Conditions

At the outer boundary (rout = 12), the fluid variables are fixed at the constant

values

Σ = r−1/2, ur = −
3
2
ν

r
, uφ = rΩ0, (3.7)

so that the accretion rate,

Ṁ = −

∫ 2π

0
Σurrdφ, (3.8)

supplied to the disk has the prescribed value Ṁ0. At the inner boundary (rin = 1),

zero-gradient conditions are imposed on Σ and ur, while uφ is fixed at its initial

(modified) Keplerian value, i.e.,

∂Σ

∂r
=
∂ur

∂r
= 0, uφ = rΩ0. (3.9)
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Near the inner and outer boundaries, wave damping zones are used to min-

imize wave reflection. This is achieved by solving the following equations for

the variables x =
(
Σ, ur, uφ

)
at the end of each time step. In the outer damping

zone 10 < r < 12, they are damped to an equilibrium state,

dx
dt

= −
x − x0

τout
R (r) , (3.10)

where x0 =
(
r−1/2,−3ν/2r, rΩ0

)
, so that the accretion rate is relaxed to Ṁ0. In the

inner damping zone (1 < r < 2), they are damped to their azimuthal averages,

dx
dt

= −
x − 〈x〉φ
τin

R (r) . (3.11)

We choose the damping timescales τin = 2πΩ−1
in and τout = 2πΩ−1

out/10, and the

dimensionless envelope function is

R (r) = 1 −
(

r − rb

rd − rb

)2

, (3.12)

where rb is the (inner or outer) boundary and rd is where the corresponding

damping zone begins. We verified that our numerical results are not strongly

affected by the placement of the boundaries and damping zones.

3.2.3 Numerical Method

The fluid equations are solved using the finite volume, Godunov scheme hydro-

dynamics code PLUTO (Mignone et al. 2007). We use second-order Runge-Kutta

time stepping, linear spatial reconstruction, and a Roe method Riemann solver.

Parabolic terms due to viscosity are handled using a super-time-stepping tech-

nique, and we utilize the FARGO advection algorithm, which relaxes the re-

strictive Courant condition associated with the average orbital motion of the

disk. We use a static polar (r, φ) grid with uniform ∆r and ∆φ, with a canonical

resolution of Nr × Nφ = 512 × 256.
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3.3 Canonical Run

The parameters of our canonical run (also referred to as “run 00” from here on)

are as follows. The disk has an aspect ratio h = 0.1 and an active zone viscosity

parameter α0 = 0.1. The DZ, in which the viscosity parameter is reduced by

a factor εDZ = 0.1, extends from rIDZ = 4.5 to rODZ = 6.5. The width of the

viscosity transition at each DZ edge is equal to half of the local scale height, i.e.,

∆rIDZ = hrIDZ/2 = 0.225 and ∆rODZ = hrODZ/2 = 0.325. The viscous timescale

is tvisc ∼ r2/ν ∼ 160(r/rin)3/2 Pin, except in the DZ, where it is longer due to the

reduction of α, and near the DZ edges, where it is shorter due to sharp viscosity

gradients. Therefore, we run the simulation for 104 Pin, which captures several

(∼ 4) viscous timescales near rODZ, and more than one viscous timescale at rout.

3.3.1 Evolution

The evolution of the canonical run is summarized in Fig. 3.1, which shows Σ

at six representative times. Initially, the surface density in the DZ increases, as

a result of the accretion of mass from the outer disk stalling in the DZ. Con-

sequently, an overdense ring forms in the DZ (t = 200), and the disk remains

axisymmetric as the amplitude of the bump grows. Eventually, it becomes large

enough to trigger RWI. Once it saturates (t = 270), the most prominent den-

sity perturbations have azimuthal number m = 4, i.e., there are four vortices.

These then merge into three (t = 320), and finally two vortices (t = 400). The

remaining two vortices, positioned 180◦ apart in azimuth (t = 500), resist merg-

ing with one another, so the final morphology has an m = 2 symmetry, whose

appearance changes only marginally over the remaining course of the simula-
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Figure 3.1: Surface density at several times during the evolution of the canonical
run. From top left to bottom right, the panels represent: (i) the initial condition,
(ii) the axisymmetric bump before becoming unstable, (iii) the saturated state of
the RWI with a prominent m = 4 pattern, (iv) the nonlinear saturation of the RWI
and merging of the four vortices into three, (v) further vortex merging, resulting
in two vortices, (vi) the quasi-steady state, with two persistent vortices.
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tion (t = 104). Azimuthally-averaged profiles of Σ and vortensity ζ = |∇ × u|/Σ

at the same representative times are shown in Fig. 3.2. As the surface density

in the DZ initially increases, forming a bump, RWI-unstable vortensity minima

are produced. The peak of the density bump reaches a maximum that is ∼ 3

times larger than the initial value before RWI is activated, which reduces the

amplitude of the bump and smooths out the vortensity profile. By t = 500, both

Σ and ζ have nearly reached their steady-state profiles, and only evolve a small

amount subsequently. In the final state, the peak 〈Σ〉φ corresponds to a factor of

two enhancement relative to the initial value.

Further details of the evolution are illustrated in Fig. 3.3, which shows three

azimuthally averaged quantities as functions of r and t: surface density Σ (nor-

malized by the initial profile), accretion rate Ṁ (normalized by the supplied rate

Ṁ0), and (dimensionless) Reynolds stress,

〈αR〉φ =
〈Σũrũφ〉φ
〈Σ〉φc2

s
, (3.13)

where ũi = ui − 〈ui〉φ. The development of a non-zero 〈αR〉φ at t ≈ 250, which

signifies enhanced angular momentum transport, is associated with the growth

of the RWI, and is coincident with expulsion of mass from the DZ. This leads

to a reduced peak 〈Σ〉φ, and a quasi-steady Ṁ, which is modulated periodically,

and with a large amplitude, by density waves, but has a steady time-averaged

value close to Ṁ0 at all radii.

The growth, saturation and nonlinear evolution of the RWI are detailed in

Fig. 3.4, which shows the integrated Fourier components of Σ,

Σm (t) =
1

2π (rout − rin)

∫ rout

rin

∫ 2π

0
Σ (r, φ, t) e−imφdφdr, (3.14)

as a function of time. Initially all components have approximately the same
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small amplitude (∼ 10−8), since the seed perturbations have no preferred az-

imuthal number. They begin to grow exponentially after about 100 Pin, when

the density bump becomes RWI-unstable. Note that although there are two

vortensity minima at this point (see Fig. 3.2), they do not become unstable in-

dependent of each another. Instead, their proximity allows them to interact

with one another, so that the entire DZ is effectively a single site for RWI to oc-

cur. During the growth phase, all of the Σm’s have similar growth rates, but the

m = 4 component grows fastest and is the first to saturate, with an amplitude

of ∼ 10−2. By about 360 Pin, the other components have saturated at comparable

values. Energy is then transferred from high-m to low-m modes through vortex

merging (see Fig. 3.1). In the final state (t > 600), Σ2 is largest, followed by Σ4,Σ6,

and Σ8, each of which is smaller than the previous by a factor of a few. The

amplitudes of odd-m components are several orders of magnitude smaller. This

configuration can be interpreted as a nonlinear m = 2 mode.

3.3.2 Quasi-Steady State

After about 600 Pin, the disk reaches a global quasi-steady state. In this stage,

the azimuthally-averaged profiles of Σ and αR remain steady, as illustrated by

Fig. 3.3. The accretion rate varies periodically in much of the disk due to waves

launched from the DZ, but is steady in a time-averaged sense. The waves are

damped in the inner disk (r . 4), resulting in almost steady accretion through

the inner boundary. Further, the azimuthal structure of the disk (i.e., the ampli-

tude of density perturbations proportional to eimφ) does not evolve further (see

Fig. 3.4). This azimuthal structure is of interest because it is dominated by an

m = 2 pattern. This differs from the morphology resulting from an isolated den-
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Figure 3.5: Snapshot of surface density Σ, Rossby number Ro, and Reynolds
stress αR in the quasi-steady state of the canonical run.

sity bump in an inviscid disk (e.g., Meheut et al. 2012b), in which all of the initial

RWI vortices merge into a single vortex, resulting in a global m = 1 symmetry.

The two vortices resist merging for the entire 104 Pin duration of the simulation,

which is much longer than the viscous timescale at the outer edge of the DZ.

This morphology also appears in several other runs in our parameter study (see

Section 3.4).

The global structure of the disk in the quasi-steady state is illustrated in Fig.

3.5, which shows snapshots of surface density, Rossby number, and local (di-

mensionless) Reynolds stress αR = ũrũφ/c2
s . Here the Rossby number is defined

Ro =
ω̃

2ΩK
, (3.15)

where ω̃ =
[
∇ ×

(
u − rΩKφ̂

)]
z

is the residual (total minus Keplerian) vorticity.

The nonlinear m = 2 morphology is apparent in the snapshots of all three quan-

tities. The surface density features associated with this azimuthal symmetry
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are coincident with regions of approximately constant Ro, which is character-

istic of vortices. They have Ro ≈ −0.5, or ω̃ ≈ −ΩK, which means that they

approximately rotate with the local shear (for a Keplerian flow, the local shear

is −3ΩK/2), and thus their survival is not threatened by the shear. The center of

the vortices have small Reynolds stresses, while large positive stress is produced

at their edges. The angular momentum transport associated with the vortices

and the associated spiral density waves outside of the DZ is described by the

azimuthally-averaged Reynolds stress (see Fig. 3.3), which can be interpreted

as an effective viscosity parameter. It is peaked at about 0.05 (near the outer DZ

edge), but remains larger than 0.03 even in the center of the DZ. Since this is

larger than the intrinsic DZ viscosity, εDZα0 = 0.01, it plays a significant role in

maintaing steady accretion through the DZ.

Figure 3.6 gives a detailed view of one of the two persistent vortices in the

quasi-steady state. It consists of two dense blobs which rotate anticyclonically

about a slightly less dense core (although the core has a surface density sev-

eral times larger than the surrounding disk). The shape of the vortex is notable,

as it differs significantly from that of a typical RWI vortex, which consists of a

smoother surface density profile with only a single maximum. Although the

overdense feature is large, with a radial extent similar to that of the DZ itself,

and spanning nearly 90◦ in azimuth, the vortex proper, i.e., the region of nega-

tive vorticity (see Fig. 3.5) is smaller, with ∆r ≈ 1.5 and r∆φ ≈ 4.0. The largest

velocity perturbations associated with it have an amplitude vmax ≈ 1.8 cs (with

cs evaluated in the middle of the DZ). The radial size of the vortex is roughly

consistent with |vmax/ω̃| ≈ 1.8H (where ω̃ ≈ −ΩK), the distance over which it can

remain coherent given its rotation frequency and velocity. While the average

surface density in the DZ is about two times larger than it would be in a con-
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stant α disk, the maximum surface density enhancement (in the centers of the

blobs) is larger by a further factor of two.

3.3.3 Periodicity

A notable feature of the canonical run (as well as other runs in our parameter

study) is that the velocity field of the disk is globally periodic, despite the pres-

ence of highly nonlinear waves (see Fig. 3.7). Figure 3.9 (top left panel) shows

the power spectrum of radial velocity ur, i.e., the square of its temporal Fourier

transform,

F [ur] (r, ω) =

∫ t2

t1
ur (r, 0, t) eiωtdt, (3.16)

where t1 and t2 are in the quasi-steady state of the disk with t2 − t1 = 100 Pin.

Power is concentrated in a global mode with frequency ω = 0.159 Ωin (and har-

monics of this fundamental frequency). Delineating the power spectrum by

azimuthal number reveals that it is an m = 2 mode, so this frequency is twice

the pattern frequency of the mode. The pattern frequency, ωP = 0.079 Ωin is very

close to the Keplerian frequency at the peak of the azimuthally-averaged surface

density profile (located at rpeak = 5.38), ΩK,peak = 0.080 Ωin. This is characteristic

of RWI modes, whose frequencies are m-times the corotation frequency of the

unstable bump, but it is remarkable that this coherent global frequency persists

in its nonlinear stage.

The global oscillations are quasi-periodic, and the power is spread around

the peak frequency with a full-width half-maximum of ∆ω/ω = 8.5%. Thus, the

velocity fluctuations at any (Eulerian) point, sampled one period apart in time,

are not exactly equal to one another. Figure 3.7 depicts the velocities ur and uφ
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at several radii (evaluated at φ = 0) as a function of time for several oscillation

periods after the main 104 Pin run. The same periodicity is seen at all locations,

since they are the result of a global mode. The lower panel gives a closer look at

the quasi-periodicity by folding over four periods (with a period extracted from

the power spectrum), demonstrating the slight variation between successive os-

cillation periods.

3.3.4 Resolution and Convergence

We performed the canonical run with double the number of radial and az-

imuthal grid points (Nr × Nφ = 1024 × 512; we denote this run “00 res”) to de-

termine how our our results depend on resolution. No qualitative differences

are observed in the disk evolution (e.g., development of bump, growth of RWI),

or the morphological appearance in the quasi-steady state (m = 2 symmetry

and two-lobed vortex shape). The key numerical quantities characterizing the

quasi-steady are given in Table 3.1, alongside those of the standard canonical

run. They differ by less than 2%, which indicates that they are converged with

respect to resolution in the standard run. We also performed the canonical run

with a steeper initial surface density profile (Σ ∝ r−1), and found that it does

not impact the final disk configuration, only the transient initial growth of the

bump and the RWI. Therefore, the quasi-steady state that is eventually reached

is not sensitive to the initial conditions, and only depends on the DZ geometry.
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Run h α0 εDZ rIDZ , rODZ ∆rIDZ/ODZ MDZ/Mnodz Σmax/Σ0,dz 〈〈αR〉〉φ,t,max 〈〈〈αR〉〉φ,t〉DZ m
00 0.1 0.1 0.1 4.5, 6.5 H/2 1.96 4.34 4.89 × 10−2 3.97 × 10−2 2

00 res 0.1 0.1 0.1 4.5, 6.5 H/2 1.93 4.26 4.89 × 10−2 4.03 × 10−2 2
R1 0.1 0.1 0.1 4.0, 7.0 H/2 4.71 8.71 1.89 × 10−2 8.62 × 10−3 2/2
R2 0.1 0.1 0.1 3.5, 7.5 H/2 5.90 11.10 1.34 × 10−2 4.10 × 10−3 1/2
R3 0.1 0.1 0.1 2.5, 8.5 H/2 6.50 11.38 8.92 × 10−3 2.19 × 10−3 1/1

DR1 0.1 0.1 0.1 4.5, 6.5 H 2.09 4.11 2.58 × 10−2 2.33 × 10−2 2
DR2 0.1 0.1 0.1 4.5, 6.5 3H/2 2.41 3.66 1.53 × 10−3 5.85 × 10−4 2
E1 0.1 0.1 0.01 4.5, 6.5 H/2 2.05 5.07 6.00 × 10−2 5.03 × 10−2 2
C1 0.075 0.1 0.1 4.5, 6.5 H/2 3.40 14.20 1.71 × 10−2 1.27 × 10−2 1
C2 0.05 0.1 0.1 4.5, 6.5 H/2 6.21 11.31 1.05 × 10−2 3.52 × 10−3 3/2
A1 0.1 0.05 0.1 4.5, 6.5 H/2 1.65 3.47 3.16 × 10−2 2.63 × 10−2 2
A2 0.1 0.025 0.1 4.5, 6.5 H/2 1.81 3.69 1.42 × 10−2 1.14 × 10−2 1

Table 3.1: Parameters and main quantitative results of our simulations. The
first column gives the alphanumeric label of each run. The next five columns
give the parameters of the runs: disk aspect ratio h = H/r, active zone viscosity
parameter α0, DZ viscosity reduction factor εDZ, DZ edges rIDZ and rODZ, and vis-
cosity transition widths ∆rIDZ and rODZ (see Section 3.2). The next column gives
the mass in the DZ, MDZ, in the quasi-steady state, normalized by the mass at
t = 0. The next column is the maximum surface density Σmax, relative to the aver-
age density in the middle of the DZ for a constant α disk. The next two columns
give the maximum of the azimuthally-averaged and time-averaged (over 100 Pin

in the quasi-steady state) dimensionless Reynolds stress, 〈〈αR〉〉φ,t,max, and its av-
erage in the DZ, 〈〈〈αR〉〉φ,t〉DZ. The last column describes the morphology of the
quasi-steady state in terms of the dominant azimuthal mode number m. A single
value in this column indicates the azimuthal number of a single global mode,
which is coherent across the entire DZ. Two values separated by a slash indi-
cate the m’s of two modes, localized to the outer (first value) and inner (second
value) DZ edges.
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Figure 3.8: Snapshots of surface density, Rossby number, and Reynolds stress,
in the quasi-steady state (as in Fig. 3.5), for all runs except the canonical run.
The scale of the x and y axes are the same as in Fig. 3.5, but the color scales for
the three plotted quantities differ between panels.
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3.4 Parameter Study

To test the dependence of the angular momentum transport and morphology on

the DZ parameters, we ran a suite of simulations, each differing from the canon-

ical run by the value of a single parameter or pair of related parameters. The

parameters for each run are listed in Table 3.1. Each run is labeled with letters,

indicating which parameter is being varied (R for DZ width, DR for viscosity

transition width, E for viscosity reduction factor, C for sound speed, and A for

active zone viscosity), and a number, which indexes multiple runs with different

parameter values. Most runs, like the canonical run 00, are evolved for 104 Pin,

but runs R3, A1 and A2 are evolved for 1.5 × 104 Pin, and C2 for 2.5 × 104 Pin.

These durations are long enough to allow the disk to reach a quasi-steady state,

in which there are no longer appreciable changes in the Fourier components of

Σ, or its azimuthally-averaged profile. While the former typically happens by

about 1000 Pin, shortly after the RWI has saturated, the latter does not happen

until much later, requiring viscous timescales to reach.

Throughout this section we refer to several figures which illustrate the main

results of our parameter study simulations. Figure 3.8 shows a snapshot of the

surface density, Rossby number and Reynolds stress at the end of each simu-

lation (as in Fig. 3.5 for run 00). These illustrate the morphology, surface den-

sity contrast, presence or absence of vortices, and level of angular momentum

transport in the quasi-steady state. Azimuthally-averaged surface density pro-

files for eight of the eleven simulations are shown in Fig. 3.10, and double-

averaged (i.e., averaged over azimuth and time) dimensionless Reynolds stress

〈〈αR〉〉φ,t = 〈〈Σũrũφ〉〉φ,t/(〈〈Σ〉〉φ,tc2
s ) profiles in Fig. 3.11. Together these indicate the

efficiency of RWI-driven angular momentum transport (large Reynolds stress
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and low DZ surface density indicate efficient transport). Figure 3.9 illustrates

the power spectrum (temporal Fourier transform squared) of ur taken over 100

orbits in the quasi-steady state for eight of the simulations. This demonstrates

the variety of oscillations present in the disk, the spatial extent of their coher-

ence, and how they are affected by the width of the DZ and by viscosity (as

described in Sections 3.4.1 and 3.4.5).

Table 3.1 summarizes several key quantities characterizing the quasi-steady

state for each simulation. The mass contained in the DZ, MDZ, is expressed in

terms of the mass in the DZ at t = 0,

Mnodz =

∫ 2π

0

∫ rODZ

rIDZ

r−
1
2 rdrdφ, (3.17)

which is equal to the mass between rIDZ and rODZ for a steady-state axisymmet-

ric disk with εDZ = 1, i.e., for a constant-α disk with no DZ (hence the sub-

script “nodz”). The maximum surface density Σmax is given in terms of the sur-

face density in the middle of the DZ at t = 0, Σ0,DZ (equal to 1/
√

5.5 = 0.43

in all runs). This indicates the largest factor by which the surface density is

enhanced relative to the ambient density slightly outside of the DZ. The maxi-

mum and DZ-averaged values of the double-averaged Reynolds stress, 〈〈αR〉〉φ,t,

computed from the profiles in Fig. 3.11, are also listed in Table 3.1.

3.4.1 Dead Zone Width

The radial width of the DZ is varied in runs R1, R2 and R3, by decreasing rIDZ

and increasing rODZ. The width of the viscosity transitions, ∆rIDZ/ODZ, are scaled

with the local scale height as in the canonical run (∆rIDZ/ODZ = H/2), and thus dif-

fer in absolute size between these runs. It is useful to define the dimensionless
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DZ width

∆DZ =
2 (rODZ − rIDZ)

rIDZ + rODZ
, (3.18)

i.e., the width of the DZ divided by the the radial coordinate of its center. The

canonical run (and all others besides the “R” runs) has ∆DZ = 0.36, while runs

R1, R2 and R3 have ∆DZ = 0.55, 0.73 and 1.09. These four runs demonstrate

the features of “narrow” and “wide” DZs, as well as the intermediate behavior

between these two regimes.

The main effect of varying the width of the DZ is shown in the top four pan-

els of Fig. 3.9. Here the power spectrum of radial velocity is shown for runs

00 and R1-R3, with increasing ∆DZ from left to right. For the smallest DZ width

(as detailed in Section 3.3), there is a global, coherent oscillation mode with a

frequency equal to twice (i.e., an m = 2 mode) the Keplerian orbital frequency

(evaluated at the DZ center) spanning the entire DZ, as well as its higher fre-

quency harmonics. This represents the typical behavior of a “narrow” DZ. For

the largest DZ width (run R3), there is a distinct mode present near each DZ

edge, each corresponding to the Keplerian frequency at a radius close to the

edge (i.e., they are m = 1 modes), along with harmonics. Each mode is coherent

only near its respective DZ edge, and does not effectively interact with the other

edge. This represents a typical “wide” DZ. Intermediate separations (runs R1

and R2; the top middle panels of Fig. 3.9) lead to more complicated behaviors

in between those of narrow and wide DZs. In these cases, there are two distinct

modes, each with a fundamental frequency associated with one DZ edge, but

not necessarily with the same m. For example, R2 has an m = 2 mode near the

inner DZ edge [i.e., its frequency is approximately 2ΩK(rIDZ)] and an m = 1 mode

near the outer edge. There are varying degrees of coherence between the edge

modes, but they are distinctly less coherent than for the narrow DZ case. The
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transition between the narrow and wide DZ regimes occurs at ∆DZ ≈ 0.7.

As the DZ width increases, the regions of negative vorticity become highly

azimuthally elongated, and are not coincident with distinct overdensities (see

Fig. 3.8 for runs R1-R3 and Fig. 3.5 for run 00). The effective Reynolds stress

also decreases (see Table 3.1), with only run R1 having 〈αR〉DZ ∼ 10−2 (recall that

10−2 is the residual intrinsic DZ viscosity). Consequently, the mass in the DZ for

runs R1-R3 is two to three times larger than in the canonical run.

3.4.2 Viscosity Transition Width

We explore the effects of changing the viscosity transition widths in runs DR1

and DR2, in which ∆rIDZ and ∆rODZ are two and three times larger than in run

00. In its quasi-steady state, DR1 is very similar to the canonical run, in terms

of morphology, DZ mass (slightly larger than the canonical run), and peak/DZ-

averaged Reynolds stress (slightly smaller than the canonical run). Run DR2 is

dramatically different, with the Reynolds stress reduced by two orders of mag-

nitude, and a morphology which resembles that of the linear-phase RWI (e.g.,

the third panel of Fig. 3.1), rather than having the strong nonlinear features

of the canonical run. The evolution of the Σm’s reveals that their exponential

growth is halted at a smaller amplitude than in the canonical run, and sub-

sequently maintained at that amplitude, suggesting that the RWI is partially

suppressed by viscosity.

This behavior can be understood as follows. The broader viscosity transi-

tions reduce the sharpness of the density bump which develops in the DZ. This

has two consequences on the linear RWI: the intrinsic growth rate is reduced,
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and the viscous damping rate is also reduced (i.e., the viscous diffusion time

across the bump increases). As shown in Appendix B, competition between

these two effects results in the existence of a critical α above which the RWI is

suppressed. We estimate that for a bump of width of H, αcrit ≈ 0.04. Thus, in

run DR1, the RWI is not strongly affected by viscosity, since αDZ = 0.01 < αcrit.

An estimate of αcrit relevant to run DR2 suggests that the growth of the RWI is

significantly reduced by viscosity. Strictly, our viscous damping criterion only

applies to the linear RWI, but we expect the nonlinear evolution to be affected

to a similar degree. This explains the qualitatively different outcome of run DR2

compared to DR1. We conclude that efficient revival of the DZ by the RWI re-

quires ∆rIDZ,∆rODZ . H (in agreement with previous studies, e.g., Lyra et al.

2009b; Regály et al. 2012).

3.4.3 Viscosity Reduction Factor

In run E1, we set εDZ = 0.01, ten times smaller than in the canonical run. In

an axisymmetric, purely viscously evolving disk, this would result in a surface

density enhancement of ∼ ε−1
DZ = 100 (compared to a constant α disk) in the DZ.

However, once a quasi-steady state has been reached, the mass accumulated in

the DZ is only about 5% larger than in the canonical run. All other features of

this run are also very similar, such as the azimuthal symmetry and vortex shape

(see Fig. 3.8). The main difference is the strength of angular momentum trans-

port; the peak and DZ-averaged Reynolds stresses are ∼ 25% larger. This may

be due to the fact that the reduced DZ viscosity leads to less viscous damping

of the vortex and density wave motions, allowing them to be more vigorous.

This behavior is in qualitative agreement with our analysis of the effect of vis-
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cosity in the linear regime (see Appendix B). Overall, compared to other DZ

parameters, the value of εDZ has a relatively minor effect on the properties of the

quasi-steady state of the disk.

3.4.4 Sound Speed

The effects of lowering the sound speed, by means of lowering the aspect ratio

h, are illustrated in Fig. 3.9. For h = 0.075 (run C1), the results are similar to

run 00, where a coherent global oscillation develops in the DZ. However, it is

dominated by an m = 1 mode (i.e., ω ≈ ΩK) rather than an m = 2 mode. This may

be related to the role of viscosity, since ν ∝ αh2, and a similar effect is seen when

α0 is reduced (see Section 3.4.5). The Reynolds stress is reduced by a factor of

three and the mass in the DZ increases by about 75%.

When h is further reduced to 0.05 (run C2), the behavior becomes similar

to the wide DZ case described in Section 3.4.1. Oscillations localized at each

DZ edge are present, with azimuthal numbers greater than unity, and with rel-

atively low amplitude in the power spectrum. The Reynolds stress becomes

small, about an order of magnitude smaller than in run 00, and the mass in the

DZ becomes large (three times larger than run 00) to compensate for the low

level of stress. In this case, the wide DZ behavior occurs because the sound

speed is too small to allow the entire DZ to oscillate coherently. In order for

both DZ edges to interact with one another, the sound crossing time of the DZ,

tcross ∼ (rODZ − rIDZ)/〈cs〉DZ, should be less than the period of a density wave pro-

duced by the RWI, which is approximately the local orbital period, i.e., the ratio

tcross/Porb,DZ ∼ ∆DZ/(2πh) should be less unity. This criterion is satisfied in run C1,
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but not in run C2.

3.4.5 Active Zone Viscosity

Run A1, in which α0 is reduced to half of its canonical run value, produces a

quasi-steady state similar to that of run 00. The morphology is dominated by

the same m = 2 mode and the shape of the vortex is the same. The DZ mass

and maximum surface density are about 20% smaller, and the Reynolds stress

(either the peak or DZ-averaged value) is 35% smaller. This suggests that the

disk self-regulates the Reynolds stress produced in the DZ, in order to achieve

a similar level of angular momentum transport as in the active zone.

Further reducing α0 in run A2 leads to many similar properties in the quasi-

steady state. There is a small increase in MDZ and Σmax, and a corresponding

reduction in αR. However, there is a major change in the morphology of the

disk. The most prominent azimuthal mode number becomes m = 1 rather than

m = 2. A similar morphological transition occurs when the sound speed is

reduced (see Section 3.4.4). In both cases, this change is associated with increas-

ing the Reynolds number, Re ∼ r2ΩK/ν ∼ α−1
0 h−2 (in the active zone; note that

the Reynolds number in the DZ does not affect the disk morphology, see Sec-

tion 3.4.3), which describes the importance of inertial forces relative to viscous

forces. Based on the values of the Reynolds number in runs 00, C1, A1, and A2,

we conclude that a narrow DZ (∆DZ . 0.7) with Re . 1800 − 2000 leads to an

m = 2 morphology, otherwise an m = 1 morphology is produced.

The physical origin of the m = 1 to m = 2 morphological change is not clear.

We speculate that it is related to the self-regulation of the stress produced in the

80



10−2

10−1

100

0 200 400 600 800 1000

Q
m
in
/Q

0

t (Pin)

10−2

10−1

100

0 200 400 600 800 1000

Q
m
in
/Q

0

t (Pin)

10−2

10−1

100

0 200 400 600 800 1000

Q
m
in
/Q

0

t (Pin)

00

R2

DR2

E1

C1

C2

E1

C1

C2

Figure 3.12: Minimum Toomre parameter in the DZ, Qmin, as a function of time,
normalized by Q0 [see Eq. (3.20)], for t < 1000 Pin in several runs.

DZ in order to match the viscous stress in the active zone. For large viscosities,

the stress associated with the m = 1 mode is insufficient to match the angular

momentum transport in the active zone, and so its amplitude is reduced relative

to the m = 2 mode, which can sustain stronger transport.

3.4.6 Gravitational Stability

Self-gravity is not included in our simulations. To evaluate its possible impor-

tance, we calculate the local value of Toomre Q parameter,

Q =
κcs

πGΣ
. (3.19)

Since in our simulations, Σ is scale free, we scale Q with respect to a reference

value. For an axisymmetric α-disk in steady state, the surface density is related
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to the accretion rate by Ṁ = 3πνΣ, and the Toomre parameter at radius rODZ is

given by

Q0 = 590
(
α

0.01

) ( h
0.1

)3 ( rODZ

10 AU

)−3/2

×

(
M

1 M�

)3/2 (
Ṁ

10−8 M�/yr

)−1

,

(3.20)

which we take as our reference value. We have adopted some fiducial parame-

ters, including a typical accretion rate for protoplanetary disks.

As mass accumulates in the DZ, the Q value in the DZ becomes smaller than

Q0. Figure 3.12 shows the minimum local value of Q in the DZ, Qmin, normalized

by Q0, as a function of time (for t < 1000 Pin) for several runs. We see that before

the RWI develops, the ratio Qmin/Q0 can be as small as 0.02 (e.g., run 00). Once

the quasi-steady state is reached, Qmin/Q0 settles to a modest value between 0.08

and 0.3, depending on the parameters of the simulation. The largest reduction

(Qmin/Q0 ≈ 0.08) occurs for run C1 (reduced sound speed), which is also the run

for which Σmax/Σ0,DZ is largest (see Table 3.1).

We conclude that, because of the angular momentum transport associated

with the nonlinear RWI, the Toomre Q parameter in the DZ can be reduced

from the fiducial value Q0 by at most a factor of 12, for a wide range of DZ

parameters. Therefore, Eq. (3.20) can be used to estimate the parameters of the

steady-state disk (just outside rODZ) for which the DZ will remain gravitationally

stable, which occurs when Q0/12 & 1. For example, for the fiducial values of h,

α, and rODZ in Eq. (3.20), stability is guaranteed as long as Ṁ . 5 × 10−7 M�yr−1.

If the outer DZ edge is instead located at 30 AU, Ṁ . 10−7 M�yr−1 is required for

stability.

We note that disk self-gravity may affect the RWI even when Q > 1. It has
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been shown that the RWI can be suppressed or modified by self-gravity when

Q . πh−1/2 (e.g., Lovelace & Hohlfeld 2013; Zhu & Baruteau 2015). A self-

consistent treatment of self-gravity is required to fully assess its importance rel-

ative to RWI in the evolution of DZs.

3.5 Discussion

3.5.1 Summary of Results

We have performed long-term, two dimensional hydrodynamic simulations of

protoplanetary disks with dead zones (DZs), modeled as regions with reduced

α-viscosities. We give significant attention to the case of narrow DZs, with ra-

dial extent of the order or less than the distance to the central star. We found

that the vortices and density waves produced by the Rossby wave instability

(RWI), triggered at vortensity gradients naturally arising in a DZ, are capable of

partially reviving it. The disk eventually reaches a quasi-steady state, in which

angular momentum transport and accretion through the DZ are achieved by a

combination of the density bump that induces RWI, and Reynolds stress cre-

ated by waves and vortices. Because of the latter, the Toomre Q parameter,

which determines gravitational stability, is reduced with respect to a constant-

α disk by at most a factor of 12, i.e., Q & Q0/12 [see Eq. (3.20)]. Therefore,

RWI can be activated and transport angular momentum through the DZ before

it becomes gravitationally unstable, unless the accretion rate is very high. This

results in steady accretion, rather than the episodic outburst cycles which may

occur when gravito-turbulence transports angular momentum in the DZ (e.g.,
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Zhu et al. 2010a, 2010b; Martin & Lubow 2011, 2014). Our results presented in

this paper suggest that such episodic cycles are possible only for high accretion

rates, e.g., Ṁ & 5 × 10−7 M�yr−1, for the fiducial disk parameters adopted in Eq.

(3.20).

We systematically explored the parameters describing the geometry of the

DZ and the disk properties, and quantified the transport efficiency of the RWI

and the mass enhancement in the DZ (see Table 3.1). In narrow DZs [∆DZ . 0.7,

see Eq. (3.18)], provided that the width of the viscosity transition is not much

wider than the local scale height, the azimuthally-averaged Reynolds stresses

reach maximum values of ∼ 0.01− 0.06, and DZ-averaged Reynolds stresses are

in the range ∼ 0.01−0.05. These effective α parameters approximately scale with

the active zone viscosity parameter α0, with the largest values corresponding to

the largest viscosity, α0 = 0.1. Typically, the mass in the DZ is enhanced relative

to a constant-α disk by a factor of two or less, while the density enhancements

in the vortices can be as large as large as 4. For wide DZs, RWI is less efficient,

resulting in peak Reynolds stresses . 0.02, and DZ-averaged Reynolds stresses

in the range 0.002 − 0.009. In this case, the mass enhancements in the DZ are

about 5 − 7, with maximum density enhancements reaching 10 − 14 (relative to

constant-α disks).

The morphology of the disk in the quasi-steady state depends on the size of

the DZ. For wide DZs, an RWI-unstable vortensity profile is created at either

DZ edge, and the resulting vortices merge to produce an m = 1 morphology.

More interesting phenomena arise for narrow DZs. When the inner and outer

DZ edges are sufficiently close, the entire DZ behaves as a single instability site,

producing coherent global oscillations. For low viscosities (Reynolds number &
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1800−2000), the global wave pattern reaches a nonlinear m = 1 mode, consistent

with the nonlinear outcome of RWI in the inviscid limit. Increasing the viscosity

results in a nonlinear m = 2 mode, with two vortices situated at the same radius,

separated by 180◦ in azimuth.

3.5.2 Limitations and Prospects

In our simulations, we modeled the DZ using a radially-dependent viscosity pa-

rameter α(r) in a two-dimensional (height-integrated) disk. However, real pro-

toplanetary disks and DZs have three-dimensional, vertically-layered structure

(Gammie 1996; Armitage 2011). In a layered disk, MRI-active surface layers of

approximately constant surface density Σactive ∼ 100 g/cm2 bookend a dead mid-

plane with surface density Σtot − Σactive that varies with radius. The outer edge

of the DZ correponds to the radius beyond which Σtot < Σactive, so that the entire

column of the disk is MRI-active. Thus, a more realistic description of the DZ

involves a viscosity parameter which varies with both radius and height, α(r, z).

Since the RWI leads to large fluctuations in surface density, a further refinement

would require a parameterization of the form α(r, z,Σ), in order to account for

fluctuations in the depth of the dead layer. These provide possibilities for future

three-dimensional simulations.

We have neglected the role of dust grains, which have several important

effects. The accumulation of marginally coupled dust grains (those with drag

stopping times similar to the dynamical time) in anticyclonic vortices can aid the

formation of planetesimals. Vortices in the outer ∼ 50−100 AU of protoplanetary

disks may be responsible for the asymmetries seen in mm-wave observations of
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transition disks (e.g., van der Marel et al. 2013; Casassus et al. 2013; Isella et

al. 2013), since marginally coupled grains at these radii correspond to a size of

mm-cm, and thus contribute significantly to mm emission. Vortices may arise

due to the presence of DZs, as described in this paper, if there are viscosity

transitions at these large radii. Alternatively, they may be produced by gaps

opened by massive planets. If viscosity transitions are present in the inner ∼

10 AU, structures similar to the ones found in our simulations may be found

with future observations which can resolve these scales. The gas morphologies

presented in this paper cannot be used as proxies for the dust morphologies,

but provide a rough approximation. Simulations of mutually coupled gas and

dust (e.g., Méheut et al. 2012c; Zhu & Stone 2014) applied to the DZ scenario

are required to fully assess this problem.
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CHAPTER 4

LONG-LIVED DUST ASYMMETRIES AT DEAD ZONE EDGES IN

PROTOPLANETARY DISKS

4.1 Introduction

A number of transitions disks (protoplanetary disks with central dust cavities;

see Espaillat et al. 2014 for a review) exhibit significant asymmetries in mm/sub-

mm dust emission (van der Marel et al. 2013; Casassus et al. 2013; Isella et

al. 2013; Pérez et al. 2014; van der Marel et al. 2016). It is commonly suggested

that these asymmetries are the result of dust trapping in large-scale vortices

(e.g., Regály et al. 2012; Lyra & Lin 2013; Zhu & Stone 2014). These can arise

at axisymmetric “bumps” in the disk, as a result of the Rossby Wave Instability

(RWI; Lovelace et al. 1999; Li et al. 2000, 2001; Méheut et al. 2012a). Note that

an alternative origin for asymmetries, resulting from the presence of a central

binary, was recently suggested by Ragusa et al. (2017).

One route to vortex formation is the opening of a gap by a planet embedded

in the disk. The outer edge (and sometimes inner edge) of the gap can be RWI-

unstable, resulting in the formation of a vortex (Li et al. 2005). The survival of

the vortex is inhibited by both viscosity, and by feedback drag exerted on the gas

by the accumulated dust (Fu et al. 2014a, 2014b), although continuous accretion

can help to sustain them. Unless both the disk viscosity and dust-to-gas ratio

are very small, a vortex formed in this fashion is unlikely to survive for more

This chapter is adapted from Miranda et al. (2017).
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than a few thousand orbits, after which the vortex is dissipated, and the dust

contained within it is dispersed into a ring (Fu et al. 2014b; Surville et al. 2016).

For the typical orbital periods of observed disk asymmetries, this vortex lifetime

corresponds to a small fraction of the disk lifetime, which may be several times

104 orbits. This implies that it is unlikely to be observed, which is problematic

if disk asymmetries are common.

There is an alternative channel for producing dust-trapping vortices via the

RWI that does not require embedded planets. Protoplanetary disks are expected

to be inefficient at transporting angular momentum via turbulence in their inner

regions, due to suppression of the magnetorotational instability by non-ideal

MHD effects (Gammie 1996; Bai & Stone 2013; Bai 2014; Lesur et al. 2014; Si-

mon et al. 2015; Bai 2016), and a lack of non-thermal ionization sources (e.g.,

Cleeves et al. 2013). This region, known as the dead zone (DZ), may extend to

a significant fraction of 100AU from the central star. Beyond the DZ, the disk is

turbulent, resulting in angular momentum transport and mass accretion. The

edge of the DZ is therefore characterized by a sharp increase in turbulent vis-

cosity (for the case of an Ohmic DZ, the gradient of effective viscosity at the

DZ edge is sharp, even when that of the underlying resistivity is not; Lyra et

al. 2015). The presence of a viscosity transition leads to accumulation of mass,

creating an RWI-unstable bump at which a vortex may be formed (Varnière &

Tagger 2006; Lyra et al. 2009; Regály et al. 2012; Lyra & Mac Low 2012; Miranda

et al. 2016). Note that the DZ also has an inner edge, but its proximity to the

central star (∼ 0.1AU; Gammie 1996) makes it irrelevant to the dynamics of the

outer disk (∼ 50AU) where asymmetric features are observed, and so we are

only concerned with the outer edge of the DZ in this study.
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In this paper, we carry out high-resolution 2D hydrodynamic simulations of

vortex formation at a DZ edge, including a full treatment of dust dynamics, with

feedback. We evolve the disk for 104 orbits, representing a substantial fraction of

the lifetime of a protoplanetary disk. We find that, unlike in the case of a vortex

at a planetary gap edge, non-axisymmetric dust trapping can be maintained for

very long periods of time. We also carry out radiative transfer calculations to

produce simulated sub-mm images from our results.

The outline of this paper is as follows. In Section 4.2, we describe the setup

for our high-resolution numerical simulations, as well as the method for creat-

ing simulated mm images from them. In Section 4.3, we present the main results

of the numerical simulations, as well as the simulated images. Finally, in Section

4.4, we discuss and contextualize our results.

4.2 Numerical Setup

We consider a two-dimensional thin disk of gas and dust described in polar co-

ordinates (r, φ) by gas surface density Σg, dust surface density Σd, gas velocity vg

and dust velocity vd, around a star of mass M∗. The equation of state for the gas

is locally isothermal, P = c2
s (r)Σg, where P is the height-integrated pressure and

cs(r) = cs,0(r/r0)−1/4 is the radially-dependent sound speed. The scale height of

the disk is H = cs/ΩK, where ΩK = (GM∗/r3)1/2 is the Keplerian orbital frequency.

The value of cs,0 is chosen so that H/r = 0.05 at r0, and the disk is slightly flared,

with H/r ∝ r1/4.

We solve the two-fluid hydrodynamic equations describing the coupled evo-

lution of gas and dust using the LA-COMPASS code (Li et al. 2005, 2009; Fu et
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al. 2014a, 2014b), including the effects of aerodynamic drag on the dust, as well

as on the gas (i.e., the back-reaction or feedback), and dust diffusion. The radial

extent of the computational domain is [0.2, 4.39], in units of the scaling radius

r0. The initial surface density profie is Σg = Σ0(r/r0)−1, which corresponds to

a steady state for a disk with constant α and our chosen sound speed profile.

Initially, the dust surface density follows the gas surface density according to

Σd = ηdΣg. Our standard value for the initial dust-to-gas ratio is ηd = 0.01. The

value of this parameter, along with several others described in this section, were

varied in several parameter study runs, which are defined in Table 4.1. The gas

surface density and velocity are fixed at their initial values at both the inner and

outer boundaries. An outflow inner boundary condition and a zero radial ve-

locity outer boundary condition are imposed on the dust. We do not consider

the effects of disk self-gravity or the “indirect potential” due to the motion of the

central star (this is justified by our small disk mass, Mdisk/M∗ ≈ 10−4; see Section

4.2.2). Throughout this paper we express time in units of “orbits”, where 1 orbit

= 2π/Ω0 is the Keplerian orbital period at r0.

Our numerical resolution is Nr×Nφ = 2048×3072 (with uniform grid spacing

in both r and φ), so that the disk scale height is resolved by about 25 grid cells at

r0, and each run is evolved for 104 orbits. The Standard run was also simulated

at a higher resolution, Nr × Nφ = 4096 × 6144, for 4000 orbits, for comparison.
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4.2.1 Viscosity Profile

The gas has a (turbulent) kinematic viscosity given by ν = αc2
s/ΩK (Shakura &

Sunyaev 1973). The DZ is modeled using a radially varying viscosity parameter,

α(r) = α0

{
1 −

1
2

(
1 −

αDZ

α0

) [
1 − tanh

(
r − rDZ

∆DZ

)]}
. (4.1)

Here α0 = 10−3 and αDZ = 10−5 are the active zone and dead zone viscosity pa-

rameters (these values are broadly consistent with recent non-ideal MHD simu-

lations, e.g., Simon et al. 2015, and models motivated by such simulations, e.g.,

Bai 2016). Note that our results are not strongly dependent on the value of αDZ,

as long as it is much less than α0. The transition between the two regions is lo-

cated at rDZ = 1.5r0, and has a width of ∆DZ, which in our standard run is chosen

to be equal to the local scale height, ∆DZ = H(rDZ) = 0.083r0.

The viscous timescale is (e.g., Lynden-Bell & Pringle 1974) tvisc = (4/9)r2/ν =

2.8 × 104(r/r0) orbits (for r/r0 & 1.5). Therefore, the 104 orbit duration of our

simulations is not long enough for significant global evolution of the gas surface

density profile to occur. The viscous timescale associated with the viscosity

transition, i.e., the timescale for bump accumulation, is smaller by a factor of

(∆DZ/r)2, resulting in tbump ≈ 100 orbits.

4.2.2 Gas and Dust Parameters

We adopt the observationally derived parameters for the disk around Oph

IRS 48, choosing M∗ = 2M�, r0 = 50AU (so that 1 orbit = 250 yr), and

Σ0 = 5.401 × 10−6M∗/r2
0 = 0.0384g/cm2 (Bruderer et al. 2014). Our choice of r0,

along with our adopted DZ parameters (edge at 75AU), result in vortices that
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form at about 60−65AU from the central star, coincident with the location of the

peak mm emission in the system. The dust dynamics are characterized by the

Stokes number, which, in the Epstein regime, is given by St = πspρp/(2Σg), where

sp and ρp are the dust size and density. We choose ρp = 0.8g/cm3 and sp = 1mm,

resulting in St = 3.27 at r0 initially. Thus, the dust experiences nearly the max-

imum possible radial drift (the maximum occurs for St = 1), and is also nearly

the most susceptible to being trapped in vortices, hence giving the strongest

possible feedback to the gas.

The total gas mass is Mg = 0.30MJ and the total dust mass is Md = 0.94M⊕,

although these values are sensitive to the extent of the disk, especially the lo-

cation of the outer boundary, which is somewhat arbitrary. For the canonical

parameters, the time required for dust to drift from rout to r = 1.25, the approx-

imate location where vortices form, is tdrift = 1250 orbits. There is about 0.71M⊕

of dust beyond the vortex radius, which could potentially be trapped there. As

the duration of our simulation is about 8 times the drift timescale, we expect

that the dust will have fully settled into a global quasi-equilibrium by the end

of the simulation, i.e., drift on a global scale will no longer be occurring.

4.2.3 Synthetic Observations

We use the results of our hydrodynamic simulations to produce simulated maps

of dust continuum emission, using RADMC-3D (Dullemond 2012), following the

method described by Jin et al. (2016), which we briefly summarize here. First,

we perform a thermal Monte Carlo simulation to determine the temperature

structure of the disk, which is determined by the distribution of small (µm) dust
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grains. For our standard parameters, µm-sized dust grains have St ∼ 0.003 at

r0, and so do not necessarily remain perfectly coupled to the gas over thou-

sands of orbits. Nonetheless, we assume that their distribution follows the

three-dimensional structure of the gas, which is extrapolated from the gas sur-

face density, with a fixed dust-to-gas ratio. The dust opacity for µm-sized dust

used in the temperature calculation is modeled as in Isella et al. (2009), using

a grain size distribution n(a) ∝ a−3.5 between 0.005µm and 100µm. The disk is

illuminated by a star with Teff = 9500K and L = 24L� (using the parameters

for IRS 48 from Follette et al. 2015). Next, the two-dimensional surface density

of large (mm) dust is also extrapolated into a three-dimensional density. These

particles generally have a different scale height than the gas due to vertical set-

tling. If settling is opposed only by turbulent diffusion, the dust scale height

is Hd =
√
α/(St + α)Hg (e.g., Birnstiel et al. 2016), which can be extremely small

compared to the gas scale height. However, in the scenario we consider, vertical

motions associated with vortices may not allow dust to settle to this degree. In-

stead, we adopt Hd = 0.1Hg, based on the results for vertical dust distributions

in vortices from Méheut et al. (2012b), for the largest particles they considered

(St = 0.5). Finally, the density distribution of mm dust, along with its opacity

(calculated the same way as for the µm dust, but with a maximum grain size of

1mm), and the temperature distribution, are used to create a synthetic thermal

emission map at 440µm (ALMA Band 9). The system is placed at a distance of

120pc with an inclination of 50◦ (again adopting the parameters of IRS 48), and

the emission map is convolved with a Gaussian beam of a given size in order to

simulate an interferometric observation.
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Name Σ0 [g/cm2] ηd ∆DZ

Standard 0.0384 0.01 H
GasHigh 0.3840 0.01 H
DustHigh 0.0384 0.10 H
ViscSharp 0.0384 0.01 H/2
ViscBroad 0.0384 0.01 2H

Table 4.1: Simulation names and parameters

4.3 Results

4.3.1 Standard Run

Figure 4.1 summarizes the evolution of the Standard run (see Table 4.1). Here,

snapshots of gas surface density, dust surface density, and Rossby number (di-

mensionless vorticity perturbation) Ro = [∇ × (vg − vK)]z/(2ΩK) are shown at

several key points in time. Note that negative values of Ro correspond to local

rotation in the opposite direction of the bulk orbital motion, i.e., anticyclonic

rotation (only anticyclonic vortices are stable against the Keplerian shear of the

disk). In the first snapshot (t = 300 orbits), three vortices have been formed

by the RWI, which has been triggered at the bump formed by accumulation of

mass near the viscosity transition. A significant amount of dust has been col-

lected axisymmetrically at the bump, such that Σd/Σg ≈ 1. In the next snapshot

(500 orbits), the three gas vortices have merged into a single vortex. The ring

of dust at the pressure maximum has become clumpy, with Σd/Σg ≈ 10 at some

points. In the third snapshot (1000 orbits), the configuration is not much dif-

ferent than the previous one (although by this point, the outer disk has been

entirely cleared of dust due to radial drift). In the fourth snapshot (2000 orbits),

the amplitude of the gas density perturbation has increased due to continued
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Figure 4.1: Snapshots of gas surface density Σg (in units of Σ0; top row), dust
surface density Σd (also in units of Σ0; middle row), and dimensionless vorticity
or Rossby number, Ro (bottom row), in the r − φ plane, for the Standard run.
Here the full azimuthal extent of the disk is shown, but only a small fraction
of the radial domain, centered on the vortex region, is shown. Note that Σd is
shown on a logarithmic scale.
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Figure 4.2: Same as Figure 4.1, with dust feedback turned off.
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Figure 4.3: Azimuthal dust distribution as a function of time, for different runs.
In each panel, vertical slices represent the average dust density distributions in
an annulus of width H/2, centered on the grid cell containing the largest dust
density, at different times (the profiles are shifted so that the maximum con-
incides with φ = π). For the Standard run, the time intervals corresponding to
the clumpy ring (“CR”), multiple clumps (“MC”), clean asymmetry (“CA”), and
dirty asymmetry (“DA”) phases are indicated.
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accumulation of gas from the viscosity transition. At this point, much of the

dust in the ring has become concentrated into two clumps, which are separated

in azimuth. Finally, in the fifth snapshot (4000 orbits), the dust has become

mostly concentrated into a single compact clump, in which the dust-to-gas ratio

is in excess of 100 (although the location of the largest dust density is not exactly

coincident with that of the largest gas density, which is also true in some of the

previous snapshots). Additionally, the peak gas density has modestly increased

since the last snapshot (∼ 20% in 2000 orbits), due to continued accretion. Note

that at later times, the dust becomes somewhat more spread out again, although

its distribution still remains strongly non-axisymmetric.

Figure 4.2 shows several snapshots of the Standard run with feedback turned

off, in order highlight its effects. Comparing with Figure 4.1, we see that feed-

back weakens the gas vortex, i.e., reduces the amplitude of the gas density and

vorticity perturbations, and causes it to become elongated. Without feedback,

the vortex aspect ratio (determined by the shape of the Ro = 0 contour bound-

ing the region of anticyclonic vorticity) is ∼ 8 at 2000 orbits, with feedback it is

∼ 20. Since the vortex is much stronger without feedback, it migrates substan-

tially (Li et al. 2001; Paardekooper et al. 2010), moving inward by about 5AU in

1000 orbits. Thus, feedback weakens the vortex so that it migrates negligibly,

staying in nearly the same place for 104 orbits. The “turbulent” features in the

vortex, traced by the vorticity field, are caused by the feedback, as without it,

the vorticity distribution is much smoother. The “shock” feature at which the

vorticity changes sign, effectively defining the edge of the vortex, is present re-

gardless of whether or not feedback is turned on. Without feedback, the dust

is very efficiently accumulated in the vortex, collecting into what is essentially

a single point by 1000 orbits, and remaining that way indefinitely. This is in
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stark contrast to the case with feedback, for which the dust is still in the form

of a clumpy ring at 1000 orbits, and does not accumulate into a single feature

(which is more extended than in the no feedback case) until 4000 orbits. Feed-

back therefore slows down and reduces the efficiency of dust trapping, but does

not completely inhibit it.

The evolution of the azimuthal dust distribution in the vortex region for the

Standard run (with feedback) is further illustrated in Figure 4.3 (top panel). We

use this to define several different phases or morphologies that the dust can ex-

hibit. Between a few hundred and about 2000 orbits, the dust distribution is

not completely axisymmetric, but rather is clumpy. We denote this the “clumpy

ring” phase, which is represented by the first three columns of Figure 4.1. Be-

tween about 2000 and 4000 orbits, in what we denote the “multiple clumps”

phase, which illustrated by the fourth column of Figure 4.1, there are two dis-

tinct clumps, initially separated by ∼ 180◦. The two clumps eventually merge,

leading to the “clean asymmetry” phase (e.g., the fifth column of Figure 4.1),

which persists for about 1000 orbits. In this phase, essentially all of the dust in

the annulus is contained in this clump. For the remainder of the evolution (after

about 5000 orbits), there is still one strong feature, but it is partially surrounded

by a residual ring with a lower surface density. We denote this the “dirty asym-

metry” phase. A snapshot of this phase, which appears to be the typical state

for many thousands of orbits, is shown in Figure 4.4, at 104 orbits. Note that

the distinction between the different morphologies is somewhat subjective and

not concrete. For example, two discrete clumps of dust closely separated in az-

imuth tend to appear as a single feature in interferometric images (see Section

4.3.3), and so there exists a continuum between the multiple clumps and a clean

asymmetry morphologies. Nonetheless, this classification scheme is useful for
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characterizing our results.

In addition to the asymmetric features we have focused on, there is also an

axisymmetric ring of dust at about r = 2.4 (120AU). The ring forms as a result

of a weak pressure maximum that forms there, in response to the pressure min-

imum formed just outside of the DZ edge. Once the ring is formed, dust that

drifts from the outer disk gets trapped in the ring and does not make it to the

vortex region. Thus, there is a finite supply of dust that can be trapped in the

vortex region. A larger computational domain with more dust available in the

outer disk would result in more dust being trapped in the ring, but the vortex

region would be unaffected. Together, the ring beyond the DZ edge and the

asymmetric features interior to it will make up the main features of our simu-

lated images (see Section 4.3.3).

We investigate the numerical convergence of our results in Figure 4.5, which

shows the maximum dust-to-gas ratio during the initial evolution of the Stan-

dard run, for several different resolutions. In all cases there is an approximately

exponential rise as dust is rapidly collected in the bump/vortices, followed by

fluctuations around an approximately constant level, which is always in excess

of unity. Larger maximum values are achieved with increasingly higher reso-

lution. The range of the fluctuations is similar for the two highest resolutions

(2048 × 3072 and 4096 × 6144), while for the lowest resolution (1024 × 1536),

the dust-to-gas ratio typically remains significantly below this range. However,

even for the highest resolution, for which case the dust-to-gas ratio can reach

several hundred, and thus feedback is very strong, the overall results are un-

changed: the dust exhibits significant azimuthal asymmetries for the duration

of the simulation.
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Figure 4.4: Snapshots of different runs at 104 orbits.

4.3.2 Parameter Dependence

We investigated the effects changing several of the parameters of the Standard

run. The parameters for these runs are given in Table 4.1. Feedback is included

in all of these runs. The main results are shown in Figure 4.3, which illustrates

the evolution of the azimuthal dust distribution in the vortex region, and Figure

4.4, which shows snapshots at 104 orbits.

Dust-to-Gas Ratio

A number of transition disks have been found to have enhanced dust-to-gas

ratios, as large as 0.1, compared the primordial disks, for which the typical value

is 0.01. We performed a simulation with ηd = 0.1 (10 times larger than in the

Standard run), labeled “DustHigh”. Note that enhancement occurs in part due
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Figure 4.5: The maximum dust-to-gas ratio versus time for the Standard run,
for several numerical resolutions.

to radial drift of dust, while the initial condition in our simulation essentially

represents a disk for which no drift has occured. Thus, there is not necessarily a

direct correspondence between an observed dust-to-gas ratio and our value of

ηd.

As there is a larger reservoir of dust mass available to be trapped by the

vortex, larger maximum dust surface densities are reached (a few times larger

than in the Standard run). As a result, dust feedback is stronger, making dust

concentration more difficult. This is evident in the azimuthal dust profile shown

in Figure 4.3: the “clean asymmetry” is only seen briefly, around 3500 − 4000

and 5000 − 6000 orbits. Instead, the distribution can usually be described by

the multiple clumps or dirty asymmetry morphology. Nonetheless, the dust

distribution remains asymmetric at all times.
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Disk Mass

The run labeled “GasHigh” features a gas surface density 10 times larger than

in the canonical run (the dust surface density is also larger so that the standard

value of ηd is maintained). As the standard gas surface density profiles repre-

sents IRS 48 as it is observed today, at an age of 8Myr, after experiencing signifi-

cant evolution (e.g., due to spreading, accretion, disk winds, photoevaporation,

etc.), this profile could represent the system at an earlier time when the disk was

more massive. The initial Stokes number of 1mm dust at r0 is 0.327 in this run,

and so the dust dynamics are different than in the Standard run. Note that this

run can also represent the dynamics of particles ten times smaller (0.1mm) with

the standard gas density profile.

Owing to the different dust dynamics, the dust is trapped in the vortex dif-

ferently, typically forming several (2 − 4) compact clumps, usually separated by

not more than 180◦ in azimuth, and often much less, as seen in Figure 4.3. The

clean or dirty asymmetry morphologies are rarely seen. The most striking dif-

ference compared to the Standard run is that the axisymmetric dust ring at 2.4r0

is not formed. Since the dust in the outer disk has St ≈ 1, the time required for

dust to drift from the outer boundary to r ≈ 1.25r0 is only about 300 orbits, about

4 times faster than in the Standard run. This is shorter than the time required

to form the weak secondary pressure maximum beyond the DZ edge, thus dust

never has a chance to be trapped there, and can only be trapped by the vortex.

This leads to a situation in which nearly all of the dust in the disk is situated on

one side of the star at at any given time.
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Viscosity Transition Width

We vary the width of the viscosity transition, in the runs labeled “ViscSharp”

and “ViscBroad”, which have ∆DZ = H/2 and 2H, respectively. In the ViscSharp

run, the sharper viscosity gradient leads to more vigorous accumulation of mass

at the DZ edge, which replenishes the RWI-unstable bump more quickly, re-

sulting in more robust vortex formation. In the snapshot shown in Figure 4.4,

there are actually two vortices present, indicating that they are continuously be-

ing formed (i.e., RWI modes with m > 1 are still being excited). The vortex is

therefore less susceptible to destruction by feedback. The amplitude of the gas

perturbation is larger (although it is still not strong enough to migrate substan-

tially), and most of the dust tends to be maintained in the center of a vortex.

The evolution of the azimuthal dust distribution is not very different from the

Standard run, except that the dirty asymmetry morphology is dominant most

of the time.

In the ViscBroad run, mass is not accumulated into a sharp enough bump to

trigger the RWI, so the disk remains axisymmetric (this result is in agreement

with previous studies which find that excitation of the RWI requires ∆DZ . 2H,

e.g., Lyra et al. 2009; Regály et al. 2012). However, at around 1800 orbits, there

is a transient growth of a very small deviation from axisymmetry in the gas

that lasts for 200 orbits and reaches an amplitude of only ∼ 1%, which is then

damped. In response, the dust becomes slightly asymmetric (barely discernible

in Figure 4.3), although the asymmetry decays with time. Visually, the dust

distribution near the DZ has a ring morphology for the entire simulation. Addi-

tionally, in this run, while a ring instead of an asymmetry is formed at r ≈ 1.25,

the second ring at r ≈ 2.4, which appears in the other runs, is not created. The
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reason for this is similar to the reason for the lack of a ring in the GasHigh run–

dust drifts through the outer disk before the secondary bump is created, in this

case due to the increased timescale for gas surface density evolution, owing to

the broader viscosity transition.

Initial Surface Density Profile

In all of the runs we have presented, we adopted smooth initial profiles for

the gas and dust surface densities. An RWI-unstable bump is self-consistently

produced by the DZ viscosity transition, as the disk attempts to reach an equi-

librium in which the accretion rate, Ṁ ∼ νΣg, is radially constant (this requires

Σg to be enhanced by a factor of α0/αDZ = 100 in the DZ). The smooth initial pro-

file, which ignores the presence of the viscosity transition, may not necessarily

represent the true initial state of the disk, and so we may ask how our results

are affected if the disk has already had a chance to partially evolve toward this

equilibrium. We explored this by first allowing the disk to evolve in 1D (i.e.,

with enforced axisymmetry) for several thousand orbits, before proceeding to

evolve it in full 2D. We find that, as the gas surface density becomes enhanced in

the DZ, a sharp bump near the viscosity transition always arises, since the vis-

cous timescale associated with the viscosity transition is much shorter than the

timescale to distribute mass farther inwards towards the DZ. Therefore, regard-

less of the specifics of the global profile, the viscosity transition guarantess the

existence of an RWI-unstable bump which forms vortices. Radial drift ensures

that dust becomes localized to the bump.
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Figure 4.6: Synthetic images at 440µm for the Standard run at several points
in time. The disk is placed at a distance of 120pc with an inclination of 50◦,
and convolved with three different Gaussian beams: 0.31′′ × 0.23′′ (top row),
0.16′′×0.11′′ (middle row), and 0.03′′×0.02′′ (bottom row). The beams are shown
in the leftmost panels of each row. The different snapshots correspond to several
different possible morphologies, including (from left to right) the clumpy ring,
multiple clumps, clean asymmetry, and dirty asymmetry phases. Note that each
image has each been scaled by its maximum intensity, which ranges from about
2− 4 mJy/beam (for the smallest beam size) to about 15− 20 mJy/beam (for the
largest beam size).

4.3.3 Synthetic Images

Images of the different phases of the Standard run are shown in Figure 4.6, for

different beam sizes. An ubiquitous feature in all of them is a ring at about

120AU, corresponding to dust trapped at the secondary pressure maximum that

arises outside of the DZ edge. The appearance of this ring does not change much

during the disk evolution. Additionally, there is the asymmetric feature at about

60−65AU, corresponding to the region shown in Figures 4.1 and 4.3. For this run,

the appearance of the dirty asymmetry morphology is not very different from

that of the clean asymmetry morphology, except for an arc of emission whose
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Figure 4.7: Synthetic images at 440µm (as in Figure 4.6) at 104 orbits for the runs
with varied parameters.

brightness is about 10% of the peak brightness of the asymmetric feature.

In all 4 images, the ring and asymmetric feature are not resolvable as sep-

arate features when convolved with the largest beam, which corresponds ap-

proximately to the resolution of ALMA cycle 0 (as in the image of IRS 48 in van

der Marel et al. 2013). As a result, the ring and asymmetry appear nearly co-

incident radially, and the brightness contrast around the apparent asymmetric

ring appears to be small (a few). For a beam that is twice as small, the ring

and asymmetry can be distinguished from one another, and the brightness con-

trast along the annulus containing the asymmetric feature is revealed to be very

large–effectively infinite on the linear scale shown (in fact it is about 103). At

the highest resolution (corresponding approximately to the optimum resolu-

tion achievable by ALMA), it is revealed that some of the asymmetric features,

which appear to constitute a single feature at lower resolutions, are in fact made

of several compact clumps or arcs. For example, in the image taken at 4000 or-
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bits, what appeared to be a single feature at lower resolution is shown to in fact

be 4 very small patches of emission clustered together azimuthally. However,

as these patches are very small (only a few grid cells wide in the hydro simu-

lations), they are still not resolved at this resolution, and their apparent size is

consistent with the beam size.

Figure 4.7 shows images of the other runs taken at 104 orbits. The DustHigh

run appears similar to the Standard run at 2000 orbits, although the ring is al-

most as bright as the asymmetric features, as a result of more dust being trapped

there. In the GasHigh run, since the outer ring is not formed, the dust emission

is dominated by the asymmetric feature, so that all of the dust appears to be on

one side of the disk. For this reason, the low resolution image of this run bears

the most resemblance to IRS 48. In this case, as for the Standard run, at optimum

resolution, the asymmetric feature is revealed to actually consist of several unre-

solved sub-components. The ViscSharp image is similar to the clean asymmetry

(or perhaps the multiple clumps) phase of the Standard run. The ViscBroad run

exhibits only an axisymmetric ring (with 10% brightness variations) at the same

radius that the other runs have asymmetries. Except for the ViscBroad run, none

of the runs are completely axisymmetric at 104 orbits.

4.4 Discussion

We performed high-resolution, two-dimensional hydrodynamic simulations of

dust trapping in vortices formed at the outer edges of DZs, including the effect

of dust feedback. We found that, while feedback somewhat inhibits and slows

down the process of azimuthal dust trapping, it does not ultimately prevent
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it from occuring. This is in contrast to the case of a vortex at the edge of a

planetary gap, in which the vortex is destroyed and the dust is released into

a ring. The key difference between these scenarios is that in the DZ case, the

viscosity transition leads to continuous accumulation of gas at the DZ edge,

which allows the RWI to be sustained, constantly replenishing the vortex. This

process is able to overcome dust feedback, which attemps to destroy the vortex.

As a result, dust remains trapped, although the vortex is weak, and the trapping

is weaker than it is without feedback. Asymmetric features in emission maps

of the disk persist for at least 104 orbits (the total duration of our simulations).

Therefore, a disk with a DZ may appear asymmetric for most of its lifetime. We

created synthetic images of thermal dust emission to compare the appearance

of these features to those observed in transition disks.

Observed asymmetric features in transition disks appear to have large ra-

dial widths, much wider than the coherence width of a vortex, which is no

more than a few pressure scale heights. However, the apparent widths are ap-

proximately consistent with one beam width, suggesting that the features are

not resolved. Future observations may have the potential to resolve these fea-

tures, which may be much narrower. This has also been proposed for vortices

at planetary gap edges (Zhu & Stone 2014), though larger features are possible

due to the effects of self-gravity and the reflex motion of the central star, pro-

vided the disk is sufficiently massive (Mittal & Chiang 2015; Zhu & Baruteau

2016, Baruteau & Zhu 2016). Additionally, the observed asymmetric features

have different azimuthal widths, ranging from relatively compact (∼ 45◦) to ex-

tended “horseshoe/banana” features extending more than 180◦ in azimuth. As

with the radial width, the azimuthal extent may also be unresolved. Our results

suggest that, if transition disk asymmetries are a result of viscosity transitions
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at DZ edges, they consist of very compact clumps of dust, or perhaps multiple

clustered clumps, which individually are unresolvable even with a resolution

of 0.02′′.

Another distinctive feature of our results is that there is also an axisymmetric

ring of dust emission, located about twice as far from the star as the asymmetric

features. When observed with low resolution, the two features blur together,

taking the appearance of an asymmetric ring with only small brightness varia-

tions in azimuth. Higher resolution observations allow the two features to be

resolved, revealing that the asymmetry in fact has a much higher brightness

contrast. A similar phenomenon, in which an apparent weak asymmetry is re-

solved into a stronger asymmetry and an axisymmetric ring, located at different

distances from the central star, was seen in observations of HD 135344B/SAO

206462. The asymmetry was first seen to be quite weak, with an azimuthal in-

tensity variation of less than 2 (Pérez et al. 2014), due to the (relatively) low res-

olution of the observation. Later observations, which achieved a better spatial

resolution of 0.16′′, were able to distinguish an asymmetry with an azimuthal in-

tensity variation of 4 from a ring which is very close to axisymmetric, with an in-

tensity variation of less than 1.2 (van der Marel et al. 2016). However, the asym-

metric feature is farther from the the star than the axisymmetric ring, in contrast

to our results, in which the asymmetric feature is closer to the star than the

ring. Additionally, this object also exhibits spiral structure in infrared scattered

light, which may indicate the presence of a planet that may be responsible for

the asymmetry. Nonetheless, this demonstrates the potential for future obser-

vations to distinguish a weak asymmetry from an unresolved ring/asymmetry

combination.
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A large amount of dust is trapped in the asymmetric features near the DZ

edge. A few tenths of an Earth mass are accumulated in the the most dense

clumps. As the dust densities reach about 10g/cm2 (or several times larger if

the initial dust-to-gas ratio is enhanced), gravitational collapse or the streaming

instability may occur in these clumps (see Raettig et al. 2015). They contain

enough mass to form not just planetesimals, but potentially planetary embryos

directly. Additionally, if such embryos are created, the trapped particles, which

experience maximal drift with respect to the gas, may be quickly accumulated

further through pebble accretion (e.g., Owen & Kollmeier 2016).
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CHAPTER 5

TIDAL TRUNCATION OF INCLINED CIRCUMSTELLAR AND

CIRCUMBINARY DISKS IN YOUNG STELLAR BINARIES

5.1 Introduction

Protoplanetary disks are often found in binary systems. In general, because

of the complex (and often turbulent) formation processes of stars, binaries,

and disks (e.g., Bate, Bonnell & Bromm 2003; McKee & Ostriker 2007; Klessen

2011; Fielding et al. 2015), both circumstellar and circumbinary disks are likely

formed with inclined orientations with respect to their binary orbital planes. In-

deed, a number of binary young stellar objects (YSOs) are observed to contain

circumstellar disks that are misaligned with the binary plane (e.g., Stapelfeldt

et al. 1998, 2003; Neuhäuser et al. 2009). The orientation of jets in several un-

resolved YSOs or pre-main-sequence binaries also suggest misalignment (e.g.,

Davis, Mundt & Eislöffel 1994; Roccatagliata et al. 2011). Recently, Jensen &

Akeson (2014) showed evidence that at least one of the circumstellar disks in

the young binary system HK Tau is inclined with respect to the binary plane by

at least 30◦. Imaging of circumbinary debris disks indicates that while some

are aligned with the binary plane, others can have significant misalignment

(such as 99 Herculis, which is misaligned by at least 30◦; Kennedy et al. 2012a,

2012b). The pre-main-sequence binary KH 15D is surrounded by a precessing

circumbinary disk inclined with respect to the binary plane by 10 − 20◦ (Chiang

& Murray-Clay 2004; Winn et al. 2004; Capelo et al. 2012), and in the FS Tau

This chapter is adapted from Miranda & Lai (2015).
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system, circumstellar disks appear to be misaligned with a circumbinary disk

(Hioki et al. 2011). Although circumbinary disks may align with the binary

plane on relatively short timescales, circumstellar disks are expected to main-

tain misalignment over timescales comparable to their lifetimes (Foucart & Lai

2014).

In recent years, many exoplanets have been found in binaries, including both

S-type planets (orbiting a single member of the binary) using radial velocity

measurements (e.g., Hatzes et al. 2003; Chauvin et al. 2011; Dumusque et al.

2012), and P-type (circumbinary) planets using the transit method (e.g., Doyle

et al. 2011; Orosz et al. 2012; Welsh et al. 2012, 2014; Kostov et al. 2014). While

the orbits of most of the circumbinary planets are consistent with alignment

with the binary orbit, Kepler-413b appears to be slightly misaligned (by about

2.5◦), possibly as a result of forming in a misaligned circumbinary disk (Kostov

et al. 2014).

The sizes of the protoplanetary disks (the outer radius of a circumstellar

disk and the inner radius of a circumbinary disk) in which planets in bina-

ries form are affected by gravitational interactions between the disk and binary.

The size of the disk is of interest because it places restrictions on the process

of planet formation. For example, the process of giant planet formation may be

jeopardized in circumstellar disks with significantly truncated outer radii (Jang-

Condell 2015).

The size of a pressureless circumstellar disk is determined by the “static”,

non-resonant tidal force from the binary companion. In particular, the disk size

is determined by the location at which orbits around the primary star begin to

intersect one another, in the context of the circular restricted three-body problem
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(Paczyński 1977; Paczyński & Rudak 1980). In this framework, the outer edge of

a circumstellar disk cannot extend past the 2:1 commensurability (i.e., the period

ratio of the binary and a test mass in the disk must exceed two), except when

the binary mass ratio is extreme. Pichardo, Sparke & Aguilar (2005) extended

this analysis to eccentric coplanar binaries, and found that the disk must always

be smaller than 73% of the average Roche lobe radius. However, Papaloizou &

Pringle (1977) demonstrated that even a very small viscosity can prevent orbit

crossings and allow the disk to be larger than the radius determined by non-

intersecting orbits.

In addition to static tidal interactions, gas disks (both circumstellar and cir-

cumbinary) in binaries are also subject to resonant tidal forcings. The motion of

the binary excites spiral density waves at Lindblad resonances, where the nat-

ural epicyclic frequency κ of the disk is commensurate with the binary orbital

frequency ΩB. As a result, a torque is exerted on the disk at each resonance (Gol-

dreich & Tremaine 1979, 1980). Artymowicz & Lubow (1994; hereafter AL94)

applied the formalism of Goldreich & Tremaine to determine the sizes of cir-

cumstellar and circumbinary disks in coplanar binaries. In their approach, the

gravitational potential of an eccentric binary is decomposed into many Fourier

components, each applying a torque on the disk at Lindblad resonances. The

possibility of gap opening and disk truncation by each potential component is

determined by the balance between the Lindblad torque and the viscous torque.

The main goal of this paper is to generalize the results of AL94 to circumstellar

and circumbinary disks in binaries with arbitrary mutual inclinations.

The behavior of Lindblad torques in misaligned disks has been explored in

several recent works. Lubow, Martin & Nixon (2015) investigated the torques
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experienced by a circumstellar disk in an inclined circular binary, which is a

special case of the general binary eccentricities studied in this paper. Nixon &

Lubow (2015) demonstrated that an eccentric binary can exert non-zero Lind-

blad torques on a retrograde circumbinary disk, which are significantly weaker

than those applied to a prograde disk, but can nonetheless be responsible for

clearing a cavity around the binary. This is a special case of the arbitrary incli-

nation framework used in this paper, although they did not make the assump-

tion of a Keplerian disk. We do not specifically address retrograde disks in this

paper.

The most important technical aspect of our work is the computation of the

Fourier components of the binary potential for arbitrary inclinations. We rep-

resent the potential semi-analytically as a power series in eccentricity (as in the

appendix of AL94), evaluated to order e10. This is accomplished through the use

of Wigner matrices to account for arbitrary inclination between the disk and bi-

nary planes, and through an expansion of the binary orbit using the Hansen

coefficients of celestial mechanics. We note that Nixon & Lubow (2015) utilized

an exact, non-series approach for computing the gravitational potential for the

special case of retrograde circumbinary disks. This method amounts to numer-

ically evaluating the Hansen integrals.

This paper is organized as follows. In Section 5.2 we decompose the gravi-

tational potential of a misaligned binary into Fourier components with various

forcing frequencies. In Section 5.3 we review how these potential components

exert Lindblad torques on a disk. In Section 5.4 we apply this theory to the trun-

cation of circumstellar disks, determining the size of the disk outer edge. We

then determine the inner radii of circumbinary disks in Section 5.5. We address
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the validity of our Keplerian disk approximation in Section 5.6. We summarize

and discuss our results in Section 5.7.

5.2 Potential Components

We consider a binary consisting of masses M1 and M2 with total mass Mtot =

M1 + M2, mass ratio q = M2/Mtot, semi-major axis a and eccentricity e. The orbital

frequency is ΩB =
(
GMtot/a3

)1/2
. The orbit is inclined relative to a reference plane,

taken to be the plane of a thin circumstellar or circumbinary disk, by an angle

i. We will express the disturbing potential (per unit mass) acting on the disk in

the form
Φ =

∑
m,µ,n

Φm,µ,n (r) cos
[
mφ − (µ + n) ΩBt

]
=

∑
m,N

Φm,N (r) cos (mφ − NΩBt) ,
(5.1)

where (r, φ) specifies the radial and azimuthal position of the disk particle, m

is the azimuthal number in the disk plane, µ is the azimuthal number in the

binary plane, N is a time harmonic number, and n is related to the eccentricity

dependence of each potential component (see later in this section). In our for-

mulation, m > 0, but µ and n can be positive, negative, or zero. Since different

(µ, n)-components with the same φ and t dependence are not physically distinct,

we have defined

Φm,N (r) =
∑
µ,n

δµ+n,NΦm,µ,n (r) , (5.2)

which measures the total strength of the potential component having the az-

imuthal number m and rotating with the pattern frequency

ωP =
N
m

ΩB. (5.3)
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Each component, denoted by (m,N), excites density waves at resonant locations

in the disk, which give rise to the torques, Tm,N . We use different approaches

to compute the potential Φm,N , depending on whether we are considering a cir-

cumstellar or circumbinary disk.

5.2.1 Circumstellar Disk

We work in the reference frame centered on the primary star M1, so that the disk

rotation rate around M1 is Ω (r) =
(
GM1/r3

)1/2
. The gravitational potential felt by

a disk particle due to M2 is

Φ = −
GM2

|r − r2|
+ GM2

r · r2

r3
12

, (5.4)

where r is the particle’s position vector, and r2 = r12r̂2 is the position vector of

M2 relative to M1. The second term in the potential is the indirect part arising

from the motion of M1 around the center of mass of the system (e.g., Murray

& Dermott 1999). The direct term can be expanded in Legendre polynomials,

leading to

Φ = −GM2

∞∑
l=2

rl

rl+1
12

Pl (r̂ · r̂2) . (5.5)

The l = 0 term is an irrelevant constant which has been dropped. The angular

dependence can be separated by an expansion in spherical harmonics,

Pl (r̂ · r̂2) =
4π

2l + 1

l∑
m=−l

Y∗l,m (θ2, φ2) Yl,m (θ, φ) . (5.6)

We define two coordinate systems. The unprimed coordinate system (θ, φ) has

its z-axis aligned with the disk angular momentum, ẑ = L̂D. The primed coor-

dinate system (θ′, φ′) has its z-axis aligned with the binary angular momentum,
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ẑ′ = L̂B. The two coordinate systems share a y-axis, and ẑ · ẑ′ = cos (i). The spher-

ical harmonics in these two coordinate systems are related through the Wigner

d matrices,

Yl,m (θ2, φ2) =

l∑
µ=−l

dl
µ,m (i) Yl,µ

(
θ′2, φ

′
2
)
. (5.7)

Combining equations (5.5), (5.6) and (5.7), evaluating Yl,m in the disk plane (θ =

π/2) and Yl,µ in the binary plane (θ′ = π/2), and taking only the real part, the

potential (5.5) can be written as

Φ = −
2GM2

a

∞∑
l=2

l∑
m=1

l∑
µ=−l

Wl,mWl,µdl
µ,m (i)

×

( r
a

)l (r12

a

)−(l+1)
cos

(
mφ − µφ′2

)
,

(5.8)

where

Wl,m =

[
(l − m)!
(l + m)!

] 1
2

Pm
l (0)

= (−1)
l+m

2 [(l − m)! (l + m)!]
1
2

×

[
2l

(
l − m

2

)
!
(
l + m

2

)
!
]−1

,

(5.9)

with the factor (−1)(l+m)/2 taken to be zero if l + m is odd, and similarly for Wl,µ.

The product Wl,mWl,µ is zero unless l, m and µ are all even or all odd. Notice that

we have taken twice the sum over only positive values of m, since the (−m,−µ)

and (m, µ) terms are identical (those with positive or negative µ are still distinct).

In this form, the expression for the potential is exact, given an explicit forms of

r12/a and φ′2, the radial coordinate and true anomaly of M2 in the binary plane.

As a final step, we use their elliptic expansions to write (see Appendix C)(r12

a

)−(l+1)
cos

(
mφ − µφ′2

)
=

∞∑
n=−∞

CCS
l,µ,n cos

[
mφ − (µ + n) ΩBt

]
.

(5.10)

Each coefficient CCS
l,µ,n is a series in powers of e, with the leading term propor-

tional to e|n|. The main approximation we make is to truncate these coefficients at
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a finite order in eccentricity (e10). The final expression for the potential strengths

is

Φm,µ,n = −
2GM2

a

∞∑
l=lmin

Wl,mWl,µCCS
l,µ,ndl

µ,m (i)
( r
a

)l
, (5.11)

where lmin = max (m, |µ|, 2).

5.2.2 Circumbinary Disk

For circumbinary disks, we work in the reference frame centered on the center

of mass of the binary. In this frame, the orbital frequency of a particle in the disk

is Ω (r) =
(
GMtot/r3

)1/2
. The disturbing potential can then be expressed as

Φ = −

∞∑
l=2

GMl

a

(r12

a

)l ( r
a

)−(l+1)
Pl (r̂ · r̂2) , (5.12)

where r12 is the separation between M1 and M2, and

Ml =
[
q (1 − q)l + (−1)l (1 − q) ql

]
Mtot (5.13)

(e.g., Ford, Kozinsky & Rasio 2000; Harrington 1968). In general, odd-l com-

ponents are weaker than even-l components for similar mass binaries, and for

equal mass binaries (q = 1/2), Ml is identically zero for odd l. Again writing the

Legendre polynomials in terms of spherical harmonics in the binary and disk

frames using the Wigner functions [equations (5.6) and (5.7)], we have

Φ = −2
∞∑

l=2

GMl

a

l∑
m=1

l∑
µ=−l

Wl,mWl,µdl
µ,m (i)

×

( r
a

)−(l+1) (r12

a

)l
cos

(
mφ − µφ′2

)
.

(5.14)
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We expand the time-dependent orbital coordinates of the binary in a manner

analogous to the circumstellar disk case,(r12

a

)l
cos

(
mφ − µφ′2

)
=

∞∑
n=−∞

CCB
l,µ,n cos

[
mφ − (µ + n) ΩBt

]
,

(5.15)

so the potential component is given by

Φm,µ,n = −2
∞∑

l=lmin

GMl

a
Wl,mWl,µCCB

l,µ,ndl
µ,m (i)

( r
a

)−(l+1)
. (5.16)

See Appendix C for the values of the CCB
l,µ,n coefficients.

5.3 Lindblad Torques

Each potential component Φm,N , rotating with the pattern frequency ωP =

NΩB/m, excites density waves at the Lindblad resonances (LRs), where

ωP −Ω (r) = ±
κ (r)
m

, (5.17)

where the upper (lower) sign corresponds to the outer (inner) LR. From here

on we assume that the epicyclic frequency κ (r) is equal to Ω (r) and both are

proportional to r−3/2, i.e., the disk is exactly Keplerian. The LRs correspond to

locations where
Ω (r)
ΩB

=
N

m ± 1
, (5.18)

and are located at

rLR

a
=


[(m ± 1) /N]2/3 (1 − q)1/3 circumstellar disk

[(m ± 1) /N]2/3 circumbinary disk
. (5.19)
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The torque on the disk at a LR is (Goldreich & Tremaine 1979)

T LR
m,N = −mπ2

Σ (
dD

d ln r

)−1

|Ψm,N |
2


rLR

, (5.20)

where Σ is the disk surface density, D = κ2 − m2 (Ω − ωP)2, and

Ψm,N =
dΦm,N

d ln r
+

2Ω

Ω − ωP
Φm,N . (5.21)

We also define Ψm,µ,n, which is the same as the above expression but with Φm,µ,n

replacing Φm,N . While Ψm,N is the quantity which determines the torque, it is

useful to discuss how various components Ψm,µ,n contribute to it, since these are

physically associated with different azimuthal forcing components of the binary

orbit. Note that since we assume Keplerian disks, 2Ω/ (Ω − ωP) = ∓2m at r = rLR,

and (
dD

d ln r

)
rLR

= ∓
3N2

m ± 1
Ω2

B. (5.22)

At inner Lindblad resonances (ILRs), T LR
m,N < 0, i.e., disk particles lose angular

momentum, and at outer Lindblad resonances (OLRs), T LR
m,N > 0, so disk parti-

cles gain angular momentum. Torques are also applied to the disk at corotation

resonances, where ωP − Ω (r) = 0, however these are not important in disk trun-

cation. Therefore we subsequently drop the superscript “LR” on Tm,N , as we

only consider Lindblad torques.

The viscous torque on the disk, assuming the α-ansatz for the kinematic vis-

cosity coefficient, ν = αc2
s/Ω, is given by (e.g., Pringle 1981)

Tν = 3παh2ΣΩ2r4, (5.23)

where h = H/r is the disk aspect ratio. As in AL94, we assume a gap is opened

at the (m,N) LR if |Tm,N | ≥ |Tν|. Throughout this paper, unless otherwise noted,

we adopt a disk model with h = 0.05 and α = 0.01.
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5.4 Results: Circumstellar Disk

5.4.1 Resonances Relevant to Outer Disk Truncation

We are interested in the largest outer radius rout that a circumstellar disk can

have, given the orbital parameters (a, e, and i) of the binary. This amounts to

determining the smallest radius at which a particular resonant torque can open

a gap. Therefore we should consider the inner Lindblad resonances of the po-

tential components with the largest pattern frequencies that satisfy |Tm,N | ≥ |Tν|,

with |Tν| evaluated at the resonance location. The pattern frequency associated

with Φm,N is ωP = NΩB/m, so we should examine components with small m and

positive N. The smallest m-components whose ILRs are in the disk have m = 2,

since all m = 1 ILRs are formally located at the origin [see equation (5.19)].

Therefore we focus on the (m,N) = (2,N) ILRs with N ≥ 2, which are located at

the Ω/ΩB = N:1 commensurabilities.

5.4.2 Effects of Disk Inclination

An example of the different contributions to a potential component is depicted

in Figure 5.1. Here Ψm,N = Ψ2,2 is shown (solid line) for an equal mass binary

with e = 0.5 as a function of disk-binary inclination i. The potential is the sum

of all Ψ2,µ,n’s with µ + n = 2. The dashed lines depict each of the individual com-

ponents which significantly contribute to Ψ2,2. Other components, not shown in

Figure 5.1, such as Ψ2,−4,6, contribute negligibly (for e = 0.5), but can be impor-

tant at larger e. We include components up to |n| = 8 in all subsequent calcu-

lations. At small inclinations, Ψ2,2 ≈ Ψ2,2,0, an equality which is exactly true at
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Figure 5.1: The potential component Ψm,N = Ψ2,2 (solid line) and the dominant
Ψ2,µ,n sub-components which contribute to it (dashed lines) for a circumstellar
disk in an equal mass binary with e = 0.5.
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Figure 5.2: Ratio of resonant torque to viscous torque as a function of inclination
for the (m,N) = (2,N) inner Lindblad resonances for a circumstellar disk in an
equal-mass binary. Each panel corresponds to a different binary eccentricity.
The horizontal dashed line corresponds to |Tm,N | = |Tν|, above which a given
resonance can clear a gap. The dashed red lines (in the middle and right panels)
are the (2, 2) torques computed using only the Ψ2,2,0 potential component, rather
than a sum of all appropriate Ψm,µ,n’s.
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i = 0◦, since dl
µ,m (0) = δµ,m. In other words, at small inclinations, the µ = 2 com-

ponent of the binary potential is primarily responsible for exciting the m = 2

disturbances in the disk. Also note that this is the only non-zero component

when e = 0, since the others have |n| > 0, and Ψm,µ,n ∝ e|n|. At intermediate incli-

nations, the azimuthal components of the binary orbit other than µ = 2 become

important, especially the µ = 0 term (Ψ2,0,2), which contributes strongly between

about 30◦ and 150◦. At inclinations close to 180◦, the component Ψ2,−2,4 becomes

dominant. This component, despite being somewhat suppressed by its eccen-

tricity dependence, becomes significant due to the strong coupling of the µ = −2

and m = 2 terms near counter-alignment. Thus, an eccentric counter-aligned

binary can exert non-zero Lindblad torques on a circumstellar disk. This is also

true for circumbinary disks (see Section 5.5).

The inclination dependence of each component is determined by a weighted

sum of Wigner functions, but to leading order is determined by the first term

in this sum. For example, Ψ2,2,0 ∝ d2
2,2 (i) ∝ cos4 (i/2) and Ψ2,0,2 ∝ d2

0,2 (i) ∝

cos2 (i/2) sin2 (i/2), both dominated by the l = 2 terms. However, the leading

order term is not necessarily a good approximation to the actual i dependence.

For example, the leading term of Ψ2,2,0 is reduced (compared to i = 0◦) by 1/4 at

90◦, while including all terms shows that this reduction is actually about 1/10,

a much steeper decrease with inclination than given by d2
2,2 (i). The shape of the

total Ψ2,2 is therefore a sum of many different Wigner functions, leading to its

characteristic shape. There are two unique characteristics of this curve. First, it

changes sign twice, at i = 29◦ and i = 172◦ (the particular values of these angles

depend on the binary eccentricity), so that no torque is exerted on the disk at

these inclinations. The sign of Ψ2,2 is irrelevant since the torque is proportional

to |Ψ2,2|
2. Second, properly summing the relevant Ψm,µ,n’s can counterintuitively
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lead to a Ψm,N whose absolute value (and hence resultant torque) is smaller than

Ψm,m,N−m (the only non-zero component for an aligned disk), as it does for a large

range of i in Figure 5.1.

Figure 5.2 shows how the resonant torques responsible for disk truncation

(normalized by viscous torque) vary with inclination, for an equal mass binary

with several different eccentricities. Notably, even for a circular binary (the left

panel of Figure 5.1), there are non-zero torques with N > 2 when the disk is not

aligned. For example, |T2,4| depends on Ψ2,4, which is equal to Ψ2,4,0 for a circular

binary. To leading order this depends on i as d4
4,2 (i) ∝ cos6 (i/2) sin2 (i/2), which

is largest at i = 60◦, and zero at 0◦ and 180◦. In our canonical disk model (with

h = 0.05 and α = 0.01), |T2,4| is never strong enough to clear a gap when e = 0,

but if α or h of the disk were slightly smaller, it would be possible for a certain

range of inclinations. This is impossible when the disk and binary are aligned.

The largest torque for a circular binary is |T2,2|, which depends only on Ψ2,2,0, a

monotonically decreasing function of i (see Figure 5.1). This torque is very large

at small inclination (exceeding |Tν| by a factor of over 104), and gets weaker as

inclination increases, becoming about 18 times smaller (compared to aligned) at

90◦, and falling to zero at 180◦.

For e > 0 (the middle and right panels of Figure 5.2), higher N torques

generally become stronger (compared to e = 0). At small inclinations, |T2,2| >

|T2,3| > |T2,4| and so on. This is because at small i these torques are primarily a

result of the Ψ2,2,N−2 potential components, which have the approximately the

same inclination dependence [d2
2,2 (i) to leading order], but different eccentricity

dependence (eN−2), the latter of which determines their relative strengths. At

larger inclinations, the contributions of the µ , 2 potential components cause
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Figure 5.3: Ratio of resonant torque to viscous torque as a function of e for
(m,N) = (2, 4) and (2, 5) ILRs in a circumstellar disk, for several inclinations.
The horizontal dashed line corresponds to |Tm,N | = |Tν|.

the torques to have more oscillatory inclination dependences (as demonstrated

in Figure 5.1). The dashed lines in the middle and right panels of Figure 5.2

show |T2,2| computed using only the Ψ2,2,0 component, demonstrating the rela-

tive importance of these couplings. As a result of this behavior, at large i (e.g.,

above about 120◦ for e = 0.3), the torque |T2,N | is no longer monotonic in N.

5.4.3 Location of Outer Disk Edge

The following procedure is used to compute rout, the location of the outer edge

of a circumstellar disk, for a given disk-binary inclination i. For each resonance

(ILR), labeled by (m,N), or by Ω(rILR)/ΩB = N/(m−1), we first compute the torque

|Tm,N | as a function of e (see Figure 5.3). Then we find the range of e for which

|Tm,N | > |Tν| (so that a gap can be opened), for each (m,N). Then at every value

of e, the outer radius of the disk is identified as the location of the gap-opening

resonance located at the smallest radius.
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Figure 5.4: Size of a circumstellar disk (location of outer edge rout) in an equal
mass binary as a function of eccentricity for several disk-binary inclinations.
The disk parameters are h = H/r = 0.05 and α = 0.01. The ratios Ω(rILR)/ΩB for
the resonances considered are labeled on the right. The filled points indicate the
eccentricities and resonance locations at which the outer disk radius changes,
and the lines connecting them indicate the behavior of rout between these points.
The points represented by crosses indicate the minimum eccentricities required
to open a gap at the Ω/ΩB = 7:2 commensurability (for inclinations matched to
the lines by color). This is an example of a resonance which is not important
for disk truncation, since other resonances can open gaps at smaller radii for
the same value of e. From left to right (in each panel), the four dashed lines
correspond to: the size of a particle disk determined by Pichardo, Sparke &
Aguilar (2005) (labeled “PSA05”), the long-term stability limit for S-type plan-
ets in binaries (for i = 0◦) from Holman & Wiegert (1999) (labeled “HW99”),
the average Roche lobe radius evaluated at the pericenter separation of the bi-
nary [labeled “rL1(e)”, see equation (5.24)], and the binary pericenter separation,
r2,min = (1 − e)a, which sets a strict upper limit for the disk size.
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The torques |Tm,N | (normalized by viscous torque at the ILR, |Tν|) for (m,N) =

(2, 4) and (2, 5) as a function of e are shown in Figure 5.3. For small e and i, |Tm,N |

is a monotonically increasing function of e, so that finding the range for which

a gap can be opened amounts to finding the minimum e for which |Tm,N | > |Tν|.

However, for large inclinations, |Tm,N | has local extrema which result in the ex-

istence of multiple values of e for which |Tm,N | = |Tν|. For example, at i = 45◦

and 90◦, as e is increased, |Tm,N/Tν| exceeds unity above a critical e, then reaches

a maximum, decreases, and again drops below unity at a second critical e. An-

other minimum is then reached, and then it exceeds unity again at yet another

critical e. Despite the oscillatory features in Figure 5.3, once the (m,N) reso-

nance is cleared, the (m,N + 1) resonance is always cleared before |Tm,N | becomes

non-gap-opening. In other words, as e is increased, the innermost gap clear-

ing resonance shifts inward, so that the disk size is a monotonically decreasing

function of e for all inclinations we have considered.

Figure 5.4 shows an example of the disk outer radius as a function of eccen-

tricity for an equal mass binary, for several inclinations. In this figure, the filled

points represent the eccentricities and resonant locations at which the outer ra-

dius abruptly changes due to a new innermost resonance “turning on” (becom-

ing able to clear a gap). These result in the outer disk radius following the

stairstep-shaped curves which connect the filled points. Several limiting radii

are also shown in Figure 5.4. The dashed line labeled rL1(e) is the average radius

of the Roche lobe around M1 (Eggleton 1983) evaluated at the pericenter of the

binary orbit:

rL1(e) =
0.49q2/3

1 (1 − e)a

0.6q2/3
1 + ln

(
1 + q1/3

1

) , (5.24)

where q1 = M1/M2 = (1− q)/q (with q = M2/Mtot). Equation (5.24) is approximate

since the original Roche lobe is calculated for circular, synchronized binaries.
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We see from Figure 5.4 that for i & 90◦, our predicted disk radius (based on

gap opening criterion) is larger than rL1(e), suggesting that our result for rout

may be larger than the actual disk size. Note, however, that since equation

(5.24) approximates the Roche lobe as a sphere, it is possible for the disk to

extend beyond rL1(e) for some inclinations. The dashed line labeled r2,min cor-

responds to the pericenter separation of the binary [r2,min = (1 − e)a]. This is a

strict upper limit on the disk size when it is either aligned or counter-aligned

(the disk-projected closest approach distance is slightly different when there is

misalignment), since if one of the stars were allowed to plunge through the disk

it would rapidly clear material from its orbit.

In Figure 5.4 we have also shown the long-term stability limit for S-type

planets in binaries (for i = 0◦), based on the fitting formula of Holman & Wiegert

(1999). This limit is smaller than the truncation radius of the disk, but close to

the “orbit-crossing” limit determined by Pichardo, Sparke & Aguilar (2005).

Our canonical disk model has h = 0.05 and α = 0.01. The effect of varying the

disk properties is shown in Figure 5.5, which depicts the disk outer radius as a

function of eccentricity for an equal mass binary (as in Figure 5.4) when α = 10−3

and α = 10−4. These correspond to a reduction of all viscous torques Tν by a fac-

tor of 10 and 100 compared to our canonical model. Since Tν is proportional

to αh2, the curves labeled α = 10−3 represent any disk with a combination of α

and h such that
(
α/10−3

)
(h/0.05)2 = 1, and similarly for curves labeled α = 10−4.

Although the viscous torques rescale trivially in this way, the complicated de-

pendence of the resonant torques on eccentricity and inclination does not allow

a simple rescaling of the disk size versus eccentricity relations. This explains the

qualitative differences between the curves in Figures 5.4 and 5.5. Most notably,

129



0.20

0.25

0.30

0.35

0.40

0.0 0.2 0.4 0.6 0.8

8:1
7:1
6:1

5:1

4:1

3:1

r o
u
t/
a

e

q = 0.5

α = 10−4

α = 10−3

0 ◦ 45 ◦90 ◦ 135 ◦
r
L
1 (e)

r
2
,m

in

P
S
A
05

Figure 5.5: Same as Figure 5.4, except for for disks with viscosity parameter
α = 10−3 and 10−4. The straight lines connecting the points are for graphical
convenience only, and are a proxy for the starstep-shaped curves depicted in
Figure 5.4.

for the values of α in Figure 5.5, a gap can be opened at the 4:1 commensurabil-

ity at zero eccentricity for i = 45◦ and 90◦, contrary to our canonical disk model

(see Figure 5.4). However, broadly speaking, the difference in disk size due to

an order of magnitude change in αh2 is comparable to the difference in size due

to a change of inclination of about 45◦.

The effect of binary mass ratio on circumstellar disk size is explored in Figure

5.6. Recall our definition of the mass ratio q = M2/Mtot, and that M2 is always

considered the perturber, regardless of whether it is more or less massive than

M1. Therefore the disk sizes for q = 0.1 and q = 0.9 can be thought of as the

sizes of the circumprimary and circumsecondary disks in a system in which the

secondary is 1/9 the mass of the primary, and similarly for q = 0.3 and q = 0.7

(in which case the secondary is 3/7 the mass of the primary). The behavior
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is qualitatively similar to the equal mass case (see Figure 5.4), but with more

massive perturbers leading to smaller disks and vice versa.

We have restricted our calculation of rout to binaries with e . 0.8. At high ec-

centricity, our ability to compute the disk outer radius is restricted by our finite

expansion of the disturbing potential: the highest order resonance we consider

is Ω/ΩB = 8:1. For larger values of e, higher order resonances can clear gaps,

further reducing the size of the disk, but computing the appropriate potential

components for these resonances is impractical in our semi-analytic approach.

5.5 Results: Circumbinary Disk

5.5.1 Resonances Relevant to Inner Disk Truncation

Determining the size rin of the inner cavity of a circumbinary disk amounts to

finding the largest radius at which a gap can be cleared. Therefore we con-

sider the OLRs of the potential components with the smallest possible pattern

frequencies. Since Ω(rOLR)/ΩB = N/(m + 1) [see equation (5.18)], we shall focus

on N = 1 and m ≥ 1, corresponding to the Ω/ΩB = 1:(m + 1) commensurabil-

ities. However, for equal-mass or nearly-equal mass binaries, the strength of

the odd-m potential components is zero or small relative to the even-m compo-

nents, resulting in a relatively weak torque |Tm,N |. As we will also show, |T1,1| can

be weak even for binaries which are not close to equal mass. Therefore, it is also

necessary to consider the next strong resonance interior to the 1:2 commensura-

bility, namely the 2:3 commensurability (m = 2, N = 2), which can be cleared by

the T2,2 torque.
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Figure 5.7: Ratio of resonant torque to viscous torque ratio as a function of in-
clination for the (m,N) = (m, 1) and (2, 2) outer Lindblad resonances in a cir-
cumbinary disk with mass ratio q = 0.3. Each panel corresponds to a different
binary eccentricity. As in Figure 5.2, the horizontal dashed line corresponds to
|Tm,N | = |Tν| (above which a resonance can clear a gap), and the dashed lines in
the middle and right panels are the (2, 2) torques computed using only the Ψ2,2,0

potential component.

5.5.2 Effects of Disk Inclination

Figure 5.7 shows the resonant torques normalized by viscous torque for a cir-

cumbinary disk around a binary with mass ratio q = 0.3 (cf. Figure 5.2 for a

circumstellar disk). The (m,N) = (1, 1) torque is weak due to the absence of

the dipole term in the binary potential [see equation (5.12)], so that to lead-

ing order, Ψ1,1 is proportional to d3
1,1 (i) (r/a)−4. Meanwhile Ψ2,2 is approximately

proportional to d2
2,2 (i) (r/a)−3 (and has its OLR at a smaller radius), and so the

(m,N) = (2, 2) torque is generally much stronger than the (1, 1) torque and can

potentially be the most relevant to clearing the inner cavity at low e and i. The

(2, 2) component is also relevant for an equal-mass binary, for which all torques

with odd m are zero.

For the same reasons as for a circumstellar disk, the torque can be an oscil-
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latory function of i, but this effect is even more pronounced for a circumbinary

disk. For example, for a circular binary, T3,1 can clear a gap at the 1:4 commen-

surability for i between 37◦ to 106◦, which is impossible for an aligned disk. For

e > 0, there are several ranges of i for which the ordering of torques is very

different than for an aligned disk, for which the torque strengths depend mono-

tonically on the resonance location (innermost resonances are the strongest).

5.5.3 Inner Cavity Size: Inner Disk Radius

The procedure for computing the inner disk radius rin for a circumbinary disk

at a given inclination i is as follows. First, for each resonance (m,N) = (m, 1) and

(2, 2), we compute |Tm,N | as a function of e (see Figure 5.8), and determine the

range of e values where gap opening is possible (|Tm,N | ≥ |Tν|). The inner disk

radius is determined by which gap-opening resonance is located at the largest

radius for every value of e.
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Figure 5.9: Size of inner cavity (location of inner edge rin) of a disk around a bi-
nary with several mass ratios (corresponding to different rows), each for several
binary-disk inclinations. The disk parameters are h = 0.05 and α = 0.01. The ra-
tios Ω(rOLR)/ΩB for the resonances considered are labeled on the right. The filled
points indicate the eccentricities and resonance locations at which the inner disk
radius changes, and the lines connecting them indicate the behavior between
these points. In the middle row, the points represented by crosses indicate the
minimum eccentricities for which a gap can be cleared at the 2:7 commensura-
bility, for i = 0◦ and 22.5◦ (for higher inclinations, a gap cannot be cleared for
any value of e). This is an example of a resonance which is not important in de-
termining the size of the inner disk, since gaps can be opened at larger radii for
the same values of e. The dashed lines in the left panels labeled “κ2 = 0” indicate
the radius below which the disk does not satisfy the Rayleigh stability criterion
(for i = 0◦). The dashed lines labeled “r2,max” correspond to the radial location
of the secondary component of the binary at apocenter [r2,max = (1 − q)(1 + e)a],
which is a strict lower limit on rin (for q = 0.5, r2,max is below the displayed range
of the y-axis). The dashed lines labeled “HW99” indicate the stability limit for
P-type planets in binaries (for i = 0◦) from Holman & Wiegert (1999). Note that
for q = 0.3 and q = 0.5, when i = 0◦ and i = 22.5◦, the cavity transitions from its
smallest size (the 1:2 commensurability for q = 0.3 and the 2:3 commensurabil-
ity for q = 0.5) to a larger size (1:3 in both cases) at a very small but non-zero
eccentricity (e = 0.01 − 0.02).
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As in the circumstellar disk case, the complicated dependence of |Tm,N | on e

can result in several ranges of e for which a resonance can open a gap. But un-

like the circumstellar disk case, this effect is significant enough to qualitatively

alter the dependence of the disk size on e. As an example, |Tm,N/Tν| is shown

in Figure 5.8 for (m,N) = (2, 1) and (3, 1), corresponding to the Ω/ΩB = 1:3 and

1:4 commensurabilities, for a binary with mass ratio q = 0.3, for several disk

inclinations. While |T2,1| is a monotonically increasing function of e, such that

for each i there is a critical e above which it can open a gap, the behavior of |T3,1|

is very different. For i = 45◦ and 90◦, it can open a gap at zero eccentricity, and it

decreases with e so that above a certain critical e a gap can no longer be opened

(for i = 45◦ a gap can again be opened at yet another larger e). In general, a given

resonance, (m,N), is not always gap-opening at the lowest value of e for which

the next resonance, (m + 1,N), first opens a gap. This is in contrast to the case

of a circumstellar disk, for which gaps are always cleared at sequentially higher

order resonances as e is increased. At large inclinations, this vastly different be-

havior of the |Tm,N |’s can result in cavity sizes which both increase or decrease

with increasing e, sometimes exhibiting both behaviors for a single inclination.

The inner disk radii for three different mass ratios and various inclinations

are shown in Figure 5.9. We first focus on the middle row, which corresponds to

the mass ratio q = 0.3 (as in Figures 5.7 and 5.8). For i = 0◦ and 22.5◦, the inner

edge is located at the 1:2 commensurability for e = 0 and increases with e as gaps

are opened at higher-order resonances. The maximum cavity size is located at

the 1:6 commensurability i = 0◦, and at the 1:5 commensurability for i = 22.5◦.

For i = 45◦ and 90◦, the 1:4 commensurability can be cleared at zero eccentricity

(see the left panel of Figure 5.7), but the cavity size then decreases with e as the

1:4 torque becomes too small and the 1:3 torque becomes responsible for gap
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opening. For i = 45◦, the size then goes back up to the 1:4 commensurability

at e = 0.47 and remains at that size for larger e. For i = 90◦ the cavity shrinks

as e increases, then remains at the 1:2 commensurability. Clearly, the behavior

of the disk inner cavity size is more complicated than in the circumstellar disk

case, and even its qualitative behavior (increasing or decreasing with e) cannot

be trivially ascertained, but requires a full consideration of the details of the

resonant torques.

The top and bottom rows of Figure 5.9 give the inner disk radii for q = 0.1

and q = 0.5. Note that a mass ratio q greater than 1/2 is degenerate with a mass

ratio of 1 − q for a circumbinary disk. Much of the qualitative behavior seen in

the q = 0.3 case can also be seen for q = 0.1, for example the cavity size is an

increasing function of e for i ≤ 45◦, while for i = 90◦, it can either be decreasing

or increasing over different ranges of e. A new behavior is seen for i = 135◦

and q = 0.1: the disk size is indepedendent of e. In this case, for all values of e,

the torque |T1,1| is strong enough to clear the 1:2 commensurability, but no other

torque |Tm,N | can clear a gap at its resonant location in the disk regardless of the

value of e. For an equal mass binary (q = 0.5), there are fewer possible truncation

sites because odd m torques are zero (since Ml = 0 for odd l). The only allowed

cavity sizes are at the 2:3, 1:3 and 1:5 commensurabilities. The dependence of

the cavity size on e is simple in this case: for all inclinations, rin increases with

e, with the maximum cavity size located at the 1:5 commensurability for i = 0◦

and i = 22.5◦ and at 1:3 commensurability for other inclinations (45◦, 90◦, 135◦).

Figure 5.9 also shows, as a function of eccentricity, the radius at which the

squared radial epicyclic frequency [see equation (5.26)] is equal to zero. Below

this radius, disk particles are unstable to radial perturbations (according to the
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Rayleigh stability criterion), and so the disk can not extend inwards beyond this

radius. This radius is shown in the left panels, and is evaluated for i = 0◦ (or

equivalently, i = 180◦). It is not shown for larger inclinations, for which the

instability region shifts inward and lies interior to r2,max = (1 − q)(1 + e)a, the

radial coordinate of the secondary star at the apocenter of the binary orbit (also

shown in Figure 5.9), which is a strict lower limit for rin. For the mass ratios

and inclinations we have considered, neither of these non-resonant truncation

mechanisms constrain the inner cavity size, except for at very large e for q = 0.1

and i ≥ 90◦ (see the two upper right panels), for which the Lindblad torques are

weak. Note that for a retrograde disk (i = 180◦), for which the torques are further

weakened, the Rayleigh stability criterion may be more relevant for truncation

than gap clearing by Lindblad torques for a wider range of binary parameters

(see Nixon & Lubow 2015).

The long-term stability limit for P-type planets in binaries (for i = 0◦) (Hol-

man & Wiegert 1999) is also shown in Figure 5.9. The inner truncation radius

is inside the stability limit, which is of interest to the formation of observed cir-

cumbinary planets, many of which reside very close to the stability limit (see

Welsh et al. 2014 and references therein). Thus, planets that have formed near

or migrated to the inner edge of the disk (e.g., Kley & Haghighipour 2014) may

experience dynamical instability as the disk disappears.

5.6 Effects of Non-Keplerian Rotation

Up to this point, we have considered disks with Keplerian rotation profiles

(Ω ∝ r−3/2), for which the rotation frequency Ω(r) is equal to the radial epicyclic
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frequency κ(r). Strictly, this is valid when the static, axisymmetric part of the

gravitational potential consists only of a monopole term, proportional to 1/r.

However, in general, the rotation profile is modified by the quadrupole and

higher-order components of the binary potential.1 The squared rotation fre-

quency is given by

Ω2(r) =
1
r

d
dr

[
ΦK(r) + Φ0,0(r)

]
, (5.25)

and the squared radial epicyclic frequency by

κ2(r) =

(
d2

dr2 +
3
r

d
dr

) [
ΦK(r) + Φ0,0 (r)

]
. (5.26)

Here ΦK(r) is equal to −GM1/r for a circumstellar disk and −GMtot/r for a cir-

cumbinary disk, and Φ0,0(r) is the (m,N) = (0, 0) component of the appropriate

disturbing potential. Equations (5.25) and (5.26) assume that pressure gradients,

which are an additional source of non-Keplerian rotation, contribute negligibly

compared to gravity (see Section 5.7).

The non-Keplerian rotation profile has two effects on the Lindblad reso-

nances. First, the resonance locations are shifted, so that they no longer corre-

spond to exact integer commensurabilities of Ω(r) and ΩB [as in equation (5.19)].

Instead, they are determined by solving the general LR condition [equation

(5.17)], and are functions of e and i. We adopt the notation rK
LR for the Keple-

rian LR locations [as given by equation (5.19)] to distinguish them from exact

locations, rLR. Second, the Lindblad torques [equation (5.20)] are modified from

their values in a Keplerian disk, since dD/d ln r and Ψm,N must be evaluated at

the new resonance locations using the modified expressions for Ω and κ. We

also adopt the notation T K
m,N for the torque on a Keplerian disk to distinguish it

from the true torque Tm,N . In this section, we consider how these effects mod-

1Nixon & Lubow (2015) included this effect in their analysis of the Lindblad torques experi-
enced by a retrograde circumbinary disk.
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Figure 5.10: The resonant frequencies (combinations of rotation frequency Ω and
radial epicyclic frequency κ) which determine the location of several Lindblad
resonances [see equation (5.17)]: Ω− κ/2 (in units of the binary orbital frequency
ΩB), which is relevant to m = 2 ILRs for a circumstellar disk (shown for an equal
mass binary with i = 0◦; left), and Ω + κ/2, which is relevant to m = 2 OLRs
(shown for a circumbinary disk with q = 0.3, for i = 0◦ and i = 90◦; right). The
line colors correspond to different binary eccentricities, as indicated by the color
bar on the right. The curves terminate (at large r for a circumstellar disk, and at
small r for a circumbinary disk) at the point at which κ2 becomes negative. The
dashed curves indicate the corresponding frequencies (Ω ± κ/2) in a Keplerian
disk. The horizontal dashed lines represent pattern frequencies ωP = NΩB/2 for
several values of N. The intersection of the Ω ± κ/2 curves with the horizontal
lines correspond to the locations of the (m,N) = (2,N) LRs. Note that for a
circumstellar disk, Ω and κ do not strongly deviate from their Keplerian values
at large inclinations, therefore only the i = 0◦ case is shown.

ify the properties of the resonances relevant to truncation for both circumstellar

and circumbinary disks.

5.6.1 Circumstellar Disk

Figure 5.10 (left panel) gives an example of how the disk rotation profiles and

the locations of ILRs (for m = 2) are modified by a non-Keplerian potential.

The profiles are obtained by evaluating equations (5.25) - (5.26) numerically. At

high eccentricities, the strong deviations from Keplerian rotation render some

resonances non-existent, since there is no r for which Ω−κ/m is equal to ωP. This
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Figure 5.11: Ratio of resonant torque Tm,N to viscous torque Tν, both evaluated
at the true resonance location rLR (solid lines), and the ratio of these torques
in a Keplerian disk, evaluated at the Keplerian resonance location rK

LR (dashed
lines), for a circumstellar disk in an equal mass binary. The (m,N) = (2, 3) and
(2, 4) ILRs (left and right panels), which are the lowest-order resonances respon-
sible for truncation at non-zero eccentricity, are each shown for several inclina-
tions. The horizontal dashed line corresponds to the threshold for disk trunca-
tion (|Tm,N/Tν| = 1).

occurs for e & 0.4 for the N = 3 ILR, and for e & 0.6 for the N = 4 ILR. Notably,

the (m,N) = (2, 2) ILR (nominally the 2:1 orbital commensurability) does not

exist for an aligned disk in a circular, equal mass binary. The largest fractional

shift in rLR for a given resonance is about 12%, occurring for the largest value of

e for which the resonance still exists. For eccentricities near this value, there can

also be a second location satisfying the resonant criterion. However, the second

location is unlikely to be relevant to disk truncation, as it is close to the point at

which the disk becomes Rayleigh unstable, and is located at a larger r than the

original resonance.

The numerical results for the ratios of resonant torque Tm,N to viscous torque

Tν are depicted in Figure 5.11, along with their Keplerian counterparts. Note

that the correction to Tν at the modified resonance location has been taken into

141



account in Figure 5.11. The deviation of the torque ratio from its Keplerian coun-

terpart is largest for i = 0◦, and negligible for other inclinations (comparable to

the thickness of the plotted lines). The i = 0◦ curves terminate at a smaller value

of e than for other inclinations, due to the fact that the resonance ceases to ex-

ist (see Figure 5.10). For eccentricities close to this point, the torque deviates

strongly from its Keplerian value (by over an order of magnitue), due to the ro-

tation profile becoming highly distorted. However, these large deviations occur

at much larger values of e than the ones for which the resonance first truncates

the disk. The eccentricities for which |Tm,N | = |Tν| change by less than 0.01 for the

resonances shown in Figure 5.11. Higher order resonances, located at smaller

radii, are affected even less strongly. Therefore, the assumption of a Keplerian

disk is a reasonable approximation for determining outer disk truncation.

To quadrupole (l = 2) and e2 order, explicit expressions for the disk rotation

profiles and Lindblad torques can be obtained. The axisymmetric, time inde-

pendent part of the disturbing potential can be approximated by

Φ0,0(r) ≈ −
GM2

4a
fCS(e, i)

( r
a

)2
, (5.27)

where the dependence on the inclination and eccentricity of the binary is given

by

fCS(e, i) =
1
2

[
3 cos2(i) − 1

] (
1 +

3
2

e2
)
. (5.28)

Thus, to this order,

Ω2(r) ≈ Ω2
K +

2Φ0,0(r)
r2 and κ2(r) ≈ Ω2

K +
8Φ0,0(r)

r2 . (5.29)

The resonance condition for m = 2 ILRs, which are relevant to outer disk trun-

cation, is then

ΩK (1 + 2εCS) ≈ NΩB, (5.30)
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Figure 5.12: Same as Figure 5.11, but for the (m,N) = (1, 1) and (2, 1) OLRs in a
circumbinary disk with mass ratio q = 0.3.

where we have defined the dimensionless parameter

εCS =

(
Φ0,0

ΦK

)
rK

LR

=
q fCS(e, i)

4N2 . (5.31)

The resonances are therefore located at

rLR ≈ rK
LR

(
1 +

4
3
εCS

)
, (5.32)

and hence shift outward (inward) compared to their locations in a Keplerian

disk when i is less (greater) than 54.7◦. We can use equations (5.29) and (5.32)

to evaluate the Lindblad torque Tm,N [equation (5.20)] explicitly (to quadrupole

and e2 order). For m = 2, we find

T2,N (rLR) ≈ T K
2,N

(
rK

LR

) (
1 +

58
3
εCS

)
. (5.33)

5.6.2 Circumbinary Disk

In Figure 5.10 (middle and right panels), we show the locations of the (m,N) =

(2, 1) and (2, 2) OLRs for i = 0◦ and 90◦, including the effects of the non-Keplerian
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potential. The largest fractional shifts are about 4%, provided that the resonance

exists. The (m,N) = (2, 2) resonance does not exist for e & 0.5 when i = 0◦, and

for e & 0.7 when i = 90◦.

The ratio of resonant to viscous torques is shown in Figure 5.12. The

(m,N) = (1, 1) torque differs most from the Keplerian case for i = 0◦, especially

near e ≈ 0.6, above which the resonance no longer exists. For i = 90◦, there is

also some appreciable deviation from the Keplerian torque at large values of e.

However, the values of e for which the resonances become gap-opening change

negligibly. Therefore, as for the case of a circumstellar disk, the approximation

of a Keplerian disk does not affect truncation.

To leading order in l and e, the non-Keplerian part of the potential can be

approximated by

Φ0,0 ≈ −
GµB

4a
fCB(e, i)

( r
a

)−3
, (5.34)

with

fCB(e, i) =
1
2

{[
3 cos2(i) − 1

] (
1 +

3
2

e2
)
− 15e2 sin2(i)

}
, (5.35)

where µB = M1M2/Mtot is the reduced mass of the binary. The resulting rotation

frequency and epicyclic frequency are

Ω2(r) ≈ Ω2
K −

3Φ0,0(r)
r2 and κ2(r) ≈ Ω2

K +
3Φ0,0(r)

r2 . (5.36)

The resonance condition for N = 1 OLRs, which are relevant to inner disk trun-

cation, is

ΩK

[
1 +

3
2

(
m − 1
m + 1

)
εCB

]
≈

ΩB

m + 1
, (5.37)

where we have defined the dimensionless parameter

εCB =

(
Φ0,0

ΦK

)
rK

LR

=
q(1 − q) fCB(e, i)

4(m + 1)4/3 . (5.38)
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So the resonance locations are

rLR ≈ rK
LR

[
1 +

(
m − 1
m + 1

)
εCB

]
. (5.39)

In this approximation, the (m,N) = (1, 1) resonance (nominally the Ω/ΩB = 1:2

commensurability) is not shifted relative to its position in a Keplerian disk. The

other N = 1 resonances shift to larger (smaller) radii compared to their locations

in a Keplerian disk when fCB(e, i) is positive (negative). Explicitly evaluating the

Lindblad torque to the same order of approximation, we find that for N = 1 (and

m > 1),

Tm,1 (rLR) ≈ T (K)
m,1

(
rK

LR

)
×

{
1 +

[
m + 2
m + 1

+
12m

3m + 1
− 2(m − 1)

]
εCB

}
.

(5.40)

5.7 Summary and Discussion

5.7.1 Main Results

We have developed a method for computing Lindblad torques due to a binary

potential on circumstellar and circumbinary disks which are misaligned with

the binary orbital plane. We used this theory to determine the outer radii of

circumstellar disks and the inner radii of circumbinary disks, generalizing the

work of Artymowicz & Lubow (1994; AL94) for aligned disks. The summary of

our results is as follows.

In the presence of misalignment (and non-zero eccentricity), each azimuthal

component of the binary potential experienced by the disk is a result of many

azimuthal components of the potential in the binary plane. This is in contrast

to aligned disk, for which each azimuthal component of the potential can only
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produce perturbations in the disk which have the same azimuthal number. As

a result, the inclination and eccentricity dependence of the gap-opening Lind-

blad torques can be somewhat complicated. Rather than simply decreasing with

inclination i (as for circular binaries), or increasing with eccentricity e (as for

aligned disks), the Lindblad torque, |Tm,N |, associated with the potential compo-

nent which rotates with pattern frequency ωP = NΩB/m (where ΩB is the binary

orbital frequency, and m, N are integers), generally has multiple extrema as func-

tions of e and i.

As in AL94, we adopt the resonance gap opening criterion |Tm,N | > |Tν|, where

Tν is the viscous torque evaluated at the resonance location. For circumstel-

lar disks, the most important resonances for disk truncation are located at the

Ω/ΩB = N:1 commensurabilities, with N ≥ 2. Ignoring non-resonant trunca-

tion mechanisms, the outer edge of the disk is determined by the innermost of

these resonances which can clear a gap. Despite the complicated dependence of

inner Lindblad torques |Tm,N | on inclination and eccentricity, for a given inclina-

tion, the resultant outer disk radius is a decreasing function of eccentricity (see

Figures 5.4–5.6). This is the same qualitative behavior as for an aligned disk

(AL94). Larger inclinations lead to larger disks: in an equal mass binary, the

disk is about 20% larger for i = 90◦ and 40% larger for i = 135◦, compared to an

aligned (i = 0◦) disk.

If the innermost gap-opening resonance lies outside of the tidal radius, then

the disk is truncated non-resonantly. This tidal radius has been estimated to be

75− 90% of the Roche lobe radius for aligned disks (Paczyński 1977; Papaloizou

& Pringle 1977; Paczyński & Rudak 1980; Pichardo, Sparke & Aguilar 2005).

In the absence of an equivalent theory for misaligned disks, we estimate the
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tidal radius to be rL1(e), the average Roche lobe radius at the binary pericenter

separation [see equation (5.24)]. We find that a circumstellar disk in an equal

mass binary fills its Roche lobe if inclined more than 45◦, for our standard disk

parameters (h = 0.05 and α = 0.01). If αh2 is smaller by a factor of 101 − 102 (a

reasonable range for protoplanetary disks), resonant truncation can restrict the

disk size to less than rL1(e) for inclinations up to 90◦. In non-equal mass binaries

(we have considered M2/M1 = 2.3 − 9.0), for our standard disk parameters, the

circumprimary disk fills its Roche lobe if inclined by more than 45◦, while the

circumsecondary disk barely fills its Roche lobe at an inclination of 90◦. Since the

Roche lobe formula [equation (5.24)] is approximate, 3D numerical calculations

are needed to determine the precise outer radii of such disks.

We have also considered the resonance clearing of the inner cavity of a cir-

cumbinary disk. The most important resonances are the Ω/ΩB = 1:N (N ≥ 2) and

2:3 commensurabilities. As for a circumstellar disk, the outer Lindblad torques

have a complicated dependence on inclination and eccentricity. However, un-

like for a circumstellar disk, the dependence of the inner disk truncation radius

on eccentricity can be very different at large inclinations (see Figure 5.9). For

an aligned disk, the inner cavity radius increases with eccentricity, and cannot

extend past the 1:6 commensurability. This is also true at small inclinations

(e.g., 22.5◦), for which the cavity is slightly smaller than for an aligned disk. At

larger inclinations, the cavity size can either be an increasing or decreasing func-

tion of eccentricity, possibly exhibiting both behaviors of different ranges of e.

Nonetheless, the inner disk radius is generally smaller at large inclinations, for

example, never extending past the 1:4 commensurability for i = 45◦ or i = 90◦,

or past the 1:3 commensurability for i = 135◦.
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5.7.2 Approximations and Uncertainties

The calculations presented in this paper adopt several assumptions. We have as-

sumed the disk to be flat. This is reasonable, as under typical conditions, bend-

ing waves and viscous stress lead to small disk warps (see Foucart & Lai 2014).

Our results for the disk truncation radii (for both circumstellar and circumbi-

nary disks) are based on the assumption of exactly Keplerian rotation profiles

(Ω ∝ r−3/2). The validity of this approximation is addressed in Section 5.6. We

find that, although non-Keplerian effects due to the binary potential can mod-

ify the resonance properties significantly at high eccentricities (e.g., some reso-

nances can be rendered non-existent), gap-clearing by the relevant resonances

occurs at low eccentricities and is only slightly modified. Thus, non-Keplerian

rotation effects have a negligible effect on disk truncation. We note, however,

that we did not consider the effect of strong pressure gradients near the edge of

the disk, which may cause further modification of the rotation profile and LRs

(Petrovich & Rafikov 2012).

Our most important assumption (which is also made in AL94) is that angu-

lar momentum is deposited into the bulk disk material at, or very close to, the

Lindblad resonances. This may affect our results in an appreciable way. First,

angular momentum cannot be directly imparted to the disk material at Lindblad

resonances, but must be carried as waves (Goldreich & Nicholson 1989), and re-

ceived by the disk where the waves dissipate, either due to viscous damping

(Takeuchi, Miyama & Lin 1996) or due to wave steepening and shock forma-

tion, although the latter should occur almost immediately after the waves are

excited for the mass ratios we have considered (Goodman & Rafikov 2001).

Second, the excited waves have broad angular momentum flux profiles, with
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widths comparable to their radial wavelengths (e.g., Meyer-Vernet & Sicardy

1987), rather than being sharply peaked at the Lindblad resonances. For these

reasons, the locations of disk truncation computed in this work may differ from

those produced by self-consistent numerical treatments which account for these

effects. For example, the hydrodynamic simulations of disks aligned with equal

mass circular binaries by MacFadyen & Milosavljevic (2008) show that while

the resonance responsible for clearing the inner cavity (m = 2, N = 2) is formally

located at r = 1.31a for a Keplerian disk, the actual cavity extends to nearly 2a.

This suggests that the details of wave excitation, propagation and breaking (or

damping) are important uncertainties in the disk truncation process. With this is

mind, our results for the truncation radii as functions of binary eccentricity and

inclination should be interpreted as general trends rather than exact, sharply de-

fined boundaries. We emphasize the need for detailed numerical work to fully

interpret and assess the results of this paper.
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CHAPTER 6

VISCOUS HYDRODYNAMICS SIMULATIONS OF CIRCUMBINARY

ACCRETION DISKS: VARIABILITY, QUASI-STEADY STATE, AND

ANGULAR MOMENTUM TRANSFER

6.1 Introduction

Circumbinary disks have been observed in a number of young stellar binaries

(e.g., Dutrey et al. 1994; Mathieu et al. 1997; Simon et al. 2000). They are also

expected to exist around supermassive black hole (SMBH) binaries as a con-

sequence of accretion from the interstellar medium following galaxy mergers

(e.g., Begelman et al. 1980; Ivanov et al. 1999; Milosavljević & Phinney 2005;

Escala et al. 2005; Mayer et al. 2007; Dotti et al. 2007; Cuadra et al. 2009; Chapon

et al. 2013). Understanding the dynamical behavior of circumbinary disks has

important applications for a variety of astrophysical problems, including vari-

able accretion in both young stellar objects (Jensen et al. 2007; Muzerolle et

al. 2013; Bary & Petersen 2014) and active galactic nuclei (e.g., D’Orazio et al.

2015), circumbinary planet formation (Paardekooper et al. 2012; Meschiari 2012;

Rafikov 2013; Silsbee & Rafikov 2015), and long-term binary orbital evolution

(e.g., Armitage & Natarajan 2002; Haiman et al. 2009; Chang et al. 2010; Roedig

et al. 2012). In this paper we carry out a suite of numerical simulations to inves-

tigate the structure, morphology, and variability of circumbinary accretion on a

wide range of time-scales, as well as the long-term angular momentum transfer

between the binary and the circumbinary disk.

This chapter is adapted from Miranda, Muñoz, & Lai (2017).
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Several characteristic features distinguish circumbinary disks from circum-

single disks. A central low-density cavity, with a size of a few times larger

than the binary orbit, is carved out around the binary by resonant gravita-

tional torques, which prevent direct viscous inflow of mass (e.g., Artymowicz &

Lubow 1994; Miranda & Lai 2015; note that binaries with small mass ratios open

annular gaps, rather than common cavities, see D’Orazio et al. 2016). How-

ever, accretion of mass by the binary is by no means suppressed, and proceeds

via narrow, non-axisymmetric streams which penetrate the central cavity (e.g.,

Artymowicz & Lubow 1996; MacFadyen & Milosavljević 2008; Muñoz & Lai

2016). These lead to time variability of the binary mass accretion rate. Streams

of material may also be launched outward into the cavity by orbital motion of

the binary (Muñoz & Lai 2016). Additionally, the binary excites eccentricity in

the disk, possibly due to eccentric Lindblad resonances (Lubow 1991), and the

eccentric disk may precess around the binary (e.g., Nelson 2003; Shi et al. 2012),

potentially producing long-term variabilities (Muñoz & Lai 2016).

The variable mass accretion of the binary on orbital time-scales has been

demonstrated both numerically (e.g., MacFadyen & Milosavljević 2008; Muñoz

& Lai 2016) and observationally (Jensen et al. 2007; Muzerolle et al. 2013; Bary

& Petersen 2014). Numerically, the accretion rate is found to vary primarily

with a period equal to either the binary orbital period (PB), or about 5 times the

binary orbital period. The occurrence of the longer period (5PB) variability is

found to be linked to the properties of the binary. For example, it is suppressed

for circular binaries with sufficiently small mass ratios (Farris et al. 2014). It

is also suppressed when the binary is eccentric (Muñoz & Lai 2016). However,

the detailed dependence of this behavior on the binary eccentricity has not been

fully explored.
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There have been conflicting claims in the literature about how the average

mass accretion rate of the binary compares to that of a single star of the same

mass. The ratio of the former to the latter characterizes the extent to which

gravitational torques from the binary suppress or enhance accretion. Previous

studies have reported values of this ratio both smaller than unity (e.g., Mac-

Fadyen & Milosavljević 2008; Ragusa et al. 2016), and greater than unity (e.g.,

Farris et al. 2014). In considering these claims, it is necessary to make a dis-

tinction between disks whose outer edges spread freely, and those whose outer

regions are supplied with mass at a steady rate (e.g., due to an infalling enve-

lope). For a freely spreading disk, a steady state, in which the accretion rate

is constant throughout the disk, is never reached, and so the accretion rate of

the binary continually changes with time (e.g., Rafikov 2016). For a disk with

a steady mass supply at the outer region, a quasi-steady state is possible. In

such a state, the time-averaged accretion rate of the binary must necessarily be

equal to the rate at which mass is supplied to the outer disk, which is governed

by processes occurring far from the binary. The time-averaged accretion rate of

the central object must then be independent of whether it is a single body or a

binary. The quasi-steady state was demonstrated in the simulations of Muñoz

& Lai (2016) using the moving mesh code AREPO, which traces the gas from a

circumbinary disk via accretion streams to circumsingle disks.

The rate at which angular momentum is transferred to the binary from the

circumbinary disk is an outstanding open question. If there were no mass ac-

cretion onto the binary, the angular momentum coupling would be mediated

only through gravitational torque, and the binary would lose angular momen-

tum to the surrounding disk. It is generally thought that such angular momen-

tum loss could play a central role in the mergers of SMBH binaries–shrinking
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their orbits from ∼ 1pc to ∼ 0.01pc separations, at which gravitational radiation

will cause them to merge within a Hubble time–providing a possible solution

to the so-called “final parsec problem” (e.g., Begelman et al. 1980, Armitage &

Natarajan 2002; Wyithe & Loeb 2003; Jaffe & Backer 2003; Sesana et al. 2008;

MacFadyen & Milosavljević 2008; Haiman et al. 2009; Kelley et al. 2016). How-

ever, mass accretion carries positive angular momentum to the binary (in the

case of a prograde disk). As a result of the competition between these two ef-

fects, the binary will, on average, either experience a net gain or suffer a net loss

of angular momentum. The sign of this net angular momentum transfer has

important consequences for the structure of the circumbinary disk, and directly

determines (along with the rate of orbital energy transfer) the orbital evolution

of the binary. As circumbinary accretion is generally variable on a range of time-

scales, controlled, long-duration numerical simulations are required to quantify

the balance between gravitational torques and angular momentum advection.

In this paper, we present a series of 2D viscous hydrodynamics simulations

of circumbinary accretion. While we adopt the simplest physical ingredients in

our simulations (e.g., no magnetic fields or radiation transfer are included, and

viscosity is prescribed using the α ansatz), our main goal is to carry out numer-

ical experiments systematically in a well-controlled manner and for sufficiently

long durations, so that reliable information can be obtained for the long-term

evolution of the disk and for the net angular momentum transfer rate to the

binary. To this end, we feed the outer disk boundary with a constant mass sup-

ply and ensure that the outer disk is close to the steady state. We carry out

simulations over many viscous times of the “mid-disk” region (far away from

the disk truncation radius), and ensure that a large region of the disk reaches

a quasi-steady state. We survey a wide range of binary eccentricity, and to a
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lesser extent, the binary mass ratio and disk viscosity parameter, and study

how the disk behavior and evolution depends on these parameters. We find

that, in addition to short-term variabilities of the binary accretion rate, the disk

also exhibits long-term variabilities, corresponding to the coherent precession

and apsidal locking of the inner disk. On average, the central binary can al-

ways accept mass at a rate very close to that supplied from the outer disk. Most

importantly, we find that the net angular momentum received by the binary, in-

cluding contributions from mass accretion, viscosity, and gravitational torque,

depends on the binary eccentricity (eB), and is positive for a wide range of eB.

This dependence of the angular momentum transfer on eB correlates with the

secular behaviors of the inner eccentric disk. Thus, contrary to the widely-held

presumption that the binary loses angular momentum to the circumbinary disk,

we find that when the effect of mass accretion is accounted for, the binary gen-

erally gains angular momentum to the extent that its semi-major axis tends to

grow with time.

The plan for this paper is as follows. In Section 6.2, we describe our numer-

ical setup. In Section 6.3, we examine the morphological features of the disk,

and discuss the truncation of the inner cavity. Section 6.4 examines the variabil-

ity of the mass accretion rate of the central binary on short (orbital) time-scales.

In Section 6.5, we present numerical results on the long-term variation of the

disk; such variation manifests as the precession and apsidal locking of the inner

disk. In Section 6.6, which is self-contained, we explore possible theoretical ex-

planations for the apsidal locking phenomenon. In Section 6.7, we investigate

the long-term evolution of the global mass accretion rate and angular momen-

tum accretion rate of the disk, and determine the average rate at which angular

momentum is transferred to the binary. We summarize and discuss our results
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in Section 6.8.

6.2 Problem Setup and Overview

A variety of computational approaches have been used to investigate the prob-

lem of circumbinary accretion, including both smoothed-particle hydrodynam-

ics (e.g., Artymowicz & Lubow 1996; Cuadra et al. 2009; Roedig et al. 2012; Pelu-

pessy & Portegies Zwart 2013; Dunhill et al. 2015) and Eulerian methods. There

is a dichotomy in the Eulerian approaches between those which include the

co-orbital region of the binary in the computational domain, and those which

excise this region. When the co-orbital region is excluded (e.g., MacFadyen &

Milosavljević 2008; Shi et al. 2012; D’Orazio et al. 2013; Shi & Krolik 2015;

Lines et al. 2015), the flow can be solved efficiently using a polar grid geome-

try and an orbital advection algorithm (e.g., FARGO; Masset 2000) to subtract

out the largely azimuthal average fluid motion, due to the fact that it is largely

azimuthal. When the co-orbital region, where the flow is much less uniform,

is included, the efficiency of this approach is lost. In this case, other methods,

including the use of Cartesian grids (e.g., Günther & Kley 2002; Hanawa et al.

2010; de Val-Borro et al. 2011) or moving meshes (e.g., Farris et al. 2014; Muñoz

& Lai 2016), have been adopted. In this paper, we employ the polar grid method

with an excised binary co-orbital region. Although we do not follow the details

of the flow around and onto the individual members of the binary, we take ad-

vantage of the lower computational cost in order to perform long-term (viscous

time-scale) integrations, and to explore a wide variety of binary orbital param-

eters.
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6.2.1 Numerical Setup

We solve the viscous hydrodynamic equations describing a thin disk around a

binary, which consists of masses M1 and M2 (total mass MB = M1 + M2), with

mass ratio qB = M2/M1, semi-major axis aB, and eccentricity eB. The positions

(ri, φi in polar coordinates) of M1 and M2 as a function of time are obtained by

solving Kepler’s equation using a higher-order extension of Newton’s method

(e.g., Murray & Dermott 1999). In our simulations, the circumbinary disk ex-

tends from rin = (1 + eB)aB to rout = 70aB, and is subject to the total gravitational

potential of the binary,

Φ(r, φ, t) = −

2∑
i=1

GMi[
r2 + r2

i − 2rri cos (φ − φi)
]1/2 . (6.1)

The equation of state is locally isothermal,

P = c2
s (r)Σ, (6.2)

where cs(r) = hrΩK is the sound speed and ΩK = (GMB/r3)1/2. The disk aspect

ratio, h = H/r (where H = cs/ΩK is the pressure scale height) is therefore constant

with r. Throughout this paper we choose h = 0.1. The kinematic viscosity is

prescribed using the α-ansatz, ν = αHcs = αh2r2ΩK.

The initial surface density of the disk is

Σ(r) =
Ṁ0

3παh2
√

GMBr

[
1 −

(rin

r

)1/2
]

exp
− (

r
redge

)−2 , (6.3)

and the initial radial velocity is

ur(r) = −
3ν
2r

[
1 −

(rin

r

)1/2
]−1

. (6.4)

For r � redge, these profiles correspond to a steady state, constant Ṁ disk, with

a zero torque condition at rin. The Gaussian factor in Eq. (6.3) creates an artifi-

cial cavity around the central binary at the approximate radius of the real cavity
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which is eventually self-consistently produced, in order to avoid violent relax-

ation at the beginning of the simulation. We set redge = 2rin. The initial rotation

profile of the disk is in centrifugal balance, including contributions from the

binary quadrupole potential and pressure gradients,

Ω2(r) = Ω2
K

1 +
3
4

qB

(1 + qB)2

(
1 +

3
2

e2
B

) (
r

aB

)−2 +
1
rΣ

dP
dr
. (6.5)

At the outer boundary rout, all fluid variables are assumed to be fixed at their

steady state values, and mass is injected into the domain at a rate Ṁ0. In code

units (GMB = aB = ΩB = 1), we choose Ṁ0 = 3παh2, so that Σ ≈ r−1/2(1 −
√

rin/r)

at r ∼ rout. At the inner boundary, we employ a “diode” boundary condition, in

which zero-gradient conditions (∂/∂r = 0) are imposed on Σ and uφ, as well as

on ur, whenever it is negative. When ur is positive, it is instead reflected across

the boundary so that ur(rin) = 0. This ensures that mass is allowed to leave the

domain but cannot enter it through the inner boundary.

The fluid equations are solved using the finite volume, shock-capturing hy-

drodynamics code PLUTO (Mignone et al. 2007). We use third-order Runge-

Kutta time stepping, piecewise parabolic spatial reconstruction, a Roe method

Riemann solver, and the FARGO orbital advection algorithm. We use a po-

lar grid centred on the centre of mass of the binary, with uniform grid spacing

in the azimuthal direction and logarithmic grid spacing in the radial direction.

Unless otherwise stated, Nφ = 600 azimuthal grid cells are used. The number of

radial cells is chosen so that ∆r ≈ r∆φ, i.e., the cells are approximately square,

by setting Nr ≈ [Nφ/(2π)] ln(rout/rin). All runs have the same value of rout(= 70aB),

but different values of rin = (1 + eB)aB, and therefore different values of Nr.
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qB eB α tend [PB] rrel(tend) [aB] rpeak [aB] r0.1 [aB] Lump $̇d [ΩB] l0 [a2
BΩB]

1.0 0.0 0.1 3000 12.16 3.56 1.67 Yes 3.38 × 10−3 +0.816 ± 0.027
1.0 0.05 0.1 3000 12.16 3.52 1.66 Yes 3.32 × 10−3 +0.825 ± 0.025
1.0 0.1 0.1 3000 12.16 3.64 1.65 No 7.64 × 10−4 +0.690 ± 0.098
1.0 0.2 0.1 5000 17.10 3.40 1.80 No None +0.674 ± 0.021
1.0 0.4 0.1 8000 23.39 3.15 2.02 No None +0.273 ± 0.017
1.0 0.6 0.1 5000 17.10 4.58 2.23 No 1.92 × 10−3 +1.053 ± 0.018
1.0 0.8 0.1 4000 14.73 5.27 2.34 No 1.79 × 10−3 +1.249 ± 0.012
1.0 0.0 0.05 7000 13.48 3.95 1.88 Yes 2.71 × 10−3 +0.800 ± 0.061
1.0 0.2 0.05 25000 31.49 3.13 1.95 No None −0.481 ± 0.145
1.0 0.3 0.05 10000 17.10 4.63 2.18 No 1.44 × 10−3 +0.996 ± 0.056
1.0 0.4 0.05 12000 19.31 4.49 2.28 No 1.80 × 10−3 +0.971 ± 0.053
1.0 0.8 0.05 10000 17.10 5.33 2.57 No 1.60 × 10−3 +1.196 ± 0.032
0.5 0.0 0.1 3000 12.16 3.45 1.63 Yes 3.18 × 10−3 +0.830 ± 0.043
0.5 0.4 0.1 5000 17.10 4.35 1.96 No 1.44 × 10−3 +1.030 ± 0.028
0.2 0.0 0.1 3000 12.16 3.08 1.42 No 3.33 × 10−3 +0.873 ± 0.020
0.2 0.4 0.1 3000 12.16 4.68 1.69 No None +1.119 ± 0.054

Table 6.1: Summary of parameters and key results of all simulations presented
in this paper. The first five columns give the binary mass ratio qB and eccen-
tricity eB, the disk viscosity parameter α, the total integration time tend, and the
viscous relaxation radius at tend. The next two columns are the two radii char-
acterizing the inner disk truncation, rpeak and r0.1. The column labelled “Lump”
indicates the presence or absence of a lump feature which causes variability of
the mass accretion rate with a period of ∼ 5PB. The second to last column gives
the precession frequency of the eccentric inner disk, or indicates if it is instead
apsidally aligned with the binary (if “None” is listed). The last column is the
net angular momentum received by the binary per unit accreted mass.

6.2.2 Analysis Procedure

Table 6.1 summarizes the parameters and key results of all the simulations pre-

sented in this paper. The relevant quantities and results are discussed in the

main sections of the paper. Of primary interest to our study is allowing the disk

to reach a steady state. This requires that the influence of the central binary

be communicated, by viscosity, to a sufficiently large radius. The viscous time-

scale at r is tν = (4/9)(r2/ν) (Lynden-Bell & Pringle 1974). Therefore, after a time

t, the disk is viscously relaxed within a radius rrel, defined by t = tν(rrel):

rrel(t) =

(
9π
2
αh2 t

PB

)2/3

aB. (6.6)
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Table 6.1 indicates the total integration time tend of each simulation, and its cor-

responding viscous relaxation radius rrel(tend). In all cases, we allow the disk to

relax out to at least 12aB, which is significantly larger than the inner disk radius.

However, this is only a necessary, not a sufficient condition, for the disk to be

in a quasi-steady state. In Section 6.7, we discuss additional criteria we use to

determine that the disk has fully relaxed.

During the long-term evolution (t = [0, tend]) of each simulation, the fluid

variables are output every 10PB. This information is used to determine the

secular evolution of the orbital elements of the disk, in particular, whether the

disk precesses or is apsidally aligned with the binary (see Section 6.5). Several

shorter duration runs are restarted from snapshots taken during the long-term

evolution. The duration of the shorter runs are chosen according to the long-

term behavior of the orbital elements of the disk. For precessing disks, the du-

ration is equal to the precession period (as this is the longest period over which

variability occurs), to the nearest 50PB, and the fluid variables are output 5 times

per PB. For the aligned cases, the restarted runs last only 50PB, and the variables

are output 20 times per PB. In either case, at least 1000, and as many as 3500

snapshots of the fluid variables are captured in each restart run. The snapshots

are used to compute time-averaged profiles of the mass accretion rate Ṁ(r), and

the net angular momentum accretion rate J̇(r) (see Section 6.7 and Eq. 6.28). We

use the evolution of these quantities to verify that the simulations are evolving

towards a quasi-steady state, as described in Section 6.7. Finally, each simula-

tion is restarted from tend, and evolved for an additional 50PB, with a sampling

rate of 20/PB. This restart run is used to compute the time-averaged surface

density profiles shown in Section 6.3, as well as the time series of Ṁ shown in

Section 6.4. These analyses are therefore performed while the disk has reached
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the quasi-steady state.

In order to check the effects of numerical resolution, we also performed two

higher resolution runs, with Nr and Nφ both twice as large as in the standard

runs, for the cases (qB, eB, α) = (1.0, 0.4, 0.1) and (1.0, 0.2, 0.05). Due to their high

computational cost, these were only evolved for 1000PB, followed by the 50PB

restart runs. We verified that the features and behaviors found in these runs

were largely unchanged compared to their standard resolution counterparts.

6.3 Disk Morphology

6.3.1 General Features

Figure 6.1 shows a sample of surface density snapshots for each of the simula-

tion runs (see Table 6.1). These snapshots are taken near the end of each simula-

tion, when the inner disk has reached a quasi-steady state. Only the innermost

part of the disk, where there are strong visible deviations from axisymmetry,

is shown. The snapshots illustrate several features that are common to all of

the simuations. There is a low-density central cavity, approximately (2 − 3)aB

in radius, carved out by gravitational torques exerted by the binary (see Section

6.3.2). Spiral density waves, primarily with azimuthal number m = 1 or 2, are

excited by the binary and propagate outwards to several times the cavity radius.

The central cavity is asymmetric, and is penetrated by dense (relative to the low

average surface density in the cavity), narrow accretion streams which carry

mass toward the inner boundary. The disk is eccentric, as seen by the shape

of the cavity edge (see Section 6.5 for a detailed discussion of the eccentricity
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Figure 6.1: Snapshots of surface density in the inner disk after reaching a quasi-
steady state (see Section 6.3.1). The snapshot for each simulation is taken at its
corresponding time tend, as given in Table 6.1, at which the binary is always at
pericentre. The binary orbit is shown in the centre of each panel. Note that for
eB = 0 (and, to a lesser extent, eB = 0.05), an m = 1 lump develops near the disk
inner edge.
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Figure 6.2: Azimuthally-averaged surface density profiles for various binary
and disk parameters (see Section 6.3.2). The solid lines are time-averaged over
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tions. The black dashed line depicts the asymptotic surface density profile for
√

r/aB � 1, Σ = Ṁ0/(3πν). The red dashed line in the top-left panel shows the
deviation from this profile in the outer disk due to the imposed value of l0 (see
Eq. 6.3) for eB = 0.
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rpeak, as a function of binary eccentricity. Only equal-mass binaries (qB = 1.0)
are shown. The locations of several resonances which are important to disk
truncation are shown on the right, and the dashed red line shows the theoretical
predictions for the truncation radius as derived by Miranda & Lai (2015).

dynamics of the inner disk). Finally, for circular, or nearly circular (eB < 0.1)

binaries only, there is a overdense lump, i.e., radially localized feature with ap-

proximate m = 1 symmetry, at the edge of the cavity. The lump orbits the binary

with approximately the local Keplerian orbital period, while exhibiting a con-

tinuous cycle of creation and destruction with the same period. This process is

associated with modulation of the mass accretion rate through the inner bound-

ary at the frequency ∼ ΩB/5 (see Section 6.4).

6.3.2 Inner Disk Truncation

Figure 6.2 shows the double-averaged (i.e., azimuthally-averaged and time-

averaged) surface density profiles for most of the runs depicted in Fig. 6.1.

Generically, 〈Σ〉 has a positive slope (d〈Σ〉/dr > 0) in the inner disk (within a
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few aB’s from the binary), then reaches a maximum at a few aB’s and has neg-

ative slope beyond that. For some parameters, the maximum manifests as a

sharp peak, while for others, it is broader and less well-defined. This is as-

sociated with variation in the value of the specific angular momentum eigen-

value l0 for each simulation (see Section 6.7), with smaller values of l0 corre-

sponding to sharper peaks. The asymptotic behavior of 〈Σ〉 for
√

r/aB � 1 is

〈Σ〉 = Ṁ/(3πν) ∝ r−1/2, which all of the profiles become similar to at large r, is

also shown in Fig. 6.2. However, the density profiles do not exactly approach

this form, due to the initial “guess” for l0 imposed by the surface density profile

(Eq. 6.3), lguess
0 =

√
GMBrin. This is demonstrated in the top left panel, for the case

(qB, eB, α) = (1.0, 0.0, 0.1). Here the initial profile for the outer disk, characterized

by l0 = 1 (in units of a2
BΩB) is shown. The actual surface density profile remains

nearly identical to this for r & 10aB, since the influence of the binary has not yet

been viscously communicated to this region.

Regardless of its sharpness, 〈Σ〉 always has a maximum, typically located at

r/aB ∼ 3−5. We denote this radius rpeak. Between rpeak and the inner boundary of

our simulation domain [rin = (1 + eB)aB], 〈Σ〉 drops by about two orders of mag-

nitude, i.e., the disk is truncated interior to rpeak. Specifying the exact location

of the “truncation radius” is ambiguous, but we define it as the radius (denoted

by r0.1) at which 〈Σ〉 is 10 per cent of its value at rpeak.

Figure 6.3 shows rpeak and r0.1, as a function of binary eccentricity. While rpeak

is not monotonic in eB (this is also associated with variations in the value of l0),

r0.1 strictly increases with eB. In the theory of inner disk truncation (Artymow-

icz & Lubow 1994; Miranda & Lai 2015), the truncation radius increases with

eB, as the torques applied at increasingly higher order resonances overcome the
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viscous torque at those locations. The locations of the relevant resonances are

shown in Fig. 6.3, as well the theoretical prediction for the truncation radius,

using the formalism of Miranda & Lai (2015). The theoretical prediction is very

similar for both values of α shown. In both cases, the Ω/ΩB = 2/3 resonance is

responsible for disk truncation for eB = 0, and then, above a small critical ec-

centricity (which is slightly different for the two values of α), the 1/3 resonance

becomes sufficiently strong to truncate the disk. Higher order resonances are

never strong enough to truncate the disk for the viscosity parameters (α = 0.05

and 0.1) considered in this paper. This discrete behavior is not observed in our

simulations, given the “fuzziness” of the disk truncation. The theory predicts

that the truncation radius lies between 1.3 and 2.1aB, while we find that r0.1 is

between 1.7 and 2.6aB. Thus, there is agreement at the 20 per cent level between

the theory and our numerical results.

165



0 5 10 15 20
t− 2000 [PB]

1

3

10
r/
a
B

-30

-20

-10

0
10

20

30

Ṁ
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Figure 6.4: The mass accretion rate Ṁ(r, t) as a function of time (x-axis) and
radius (y-axis), for qB = 1.0, α = 0.1, and two different binary eccentricities,
eB = 0.0 (top) and 0.8 (bottom). The accretion rate (colours) is normalized by the
supplied rate at rout, Ṁ0. Note that the colour bars have different scales in the
top and bottom panels. The hatched region in the bottom panel indicates that
the computational domain does not extend down to r/aB = 1 as it does in the
top panel. For eB = 0.0, the main periodicities that can be seen are at 5PB and
PB/2. For eB = 0.8, the main variability is at PB. We find that this behavior is
typical for eccentric binaries. In both cases, the accretion rate is steady beyond
about 10aB. This outer region is not shown, in order to focus on the variability
of the inner disk (see Section 6.4.1).
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Figure 6.5: The mass accretion rate at rin = (1 + eB)aB for an equal mass binary
(qB = 1.0) and α = 0.1, for a range of binary eccentricities, eB (first and third
rows), and its power spectrum, taken over 50PB (second and fourth rows). The
top sequence of eccentricities demonstrates the transition from accretion modu-
lated at a frequency of approximately ΩB/5, to accretion modulated at ΩB, which
occurs at about eB = 0.05. The bottom sequence indicates the typical behavior
for the moderate to high binary eccentricity cases, where the accretion is modu-
lated only at ΩB. See Section 6.4.1.

167



6.4 Short Time-Scale Variability

6.4.1 Dependence on Binary Eccentricity

We explore the time-dependence of the local mass accretion rate1,

Ṁ(r, t) = −

∮
rΣurdφ, (6.7)

which is generally variable on orbital time-scales. The accretion rate as a func-

tion of r and t are shown in Fig. 6.4, for two representative cases (eB = 0 and

0.8). For the circular case, two clear periodicities are evident. First, there are

variations with a frequency of 2ΩB in the inner disk (r . 4aB). Second, there

are larger variations, with a frequency of about ΩB/5, which are present out to

about ∼ 10aB, having the largest amplitude at about (2 − 3)aB. The second type

of variability has been seen in previous simulations of disks around circular

binaries (e.g., MacFadyen & Mirosavljevic 2008; Farris et al. 2014), and is some-

times referred to as having a frequency of (2/9)ΩB (note that we find the exact

frequency to be 0.21ΩB, with a FWHM in power of 0.03ΩB, so the distinction

between 1/5 and 2/9 is irrelevant). Note that in our simulations, Ṁ is always

positive at the inner boundary, as required by the diode boundary condition.
1In this section, we use an approximation for Ṁ, in which the (primitive) fluid variables (Σ,u)

are taken to be equal to their cell-averaged values at cell centres. These values, as output by
PLUTO, are derived from the cell-averaged values of the conservative variables (Σ and momen-
tum density m). In other words, the inter-cell variation of the primitive variables, which van-
ishes in the limit of infinite resolution, is ignored. This approximation is valid for exploring the
short-term time-dependence of Ṁ, because its variations are much larger than its time-averaged
value. However, when evaluating small fluctuations in the time-averaged profile of Ṁ (as well
as that of J̇), as in Section 6.7, the approximation breaks down. In this case, it is necessary to
reconstruct the inter-cell variation, using the piecewise parabolic interpolation method (Colella
& Woodward 1984), as employed in the hydrodynamic solver, to evaluate the fluid variables
at cell interfaces, before taking their appropriate products to calculate Ṁ or J̇. Taking products
of the cell-averaged fluid variables can result in anomalous features in the profiles of Ṁ and J̇,
wherever the variables have strong inter-cell gradients. The interpolation allows the different
variables to be evaluated at the same location before their products are taken, resulting in more
accurate profiles.
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Muñoz & Lai (2016) showed that this feature is preserved in more realistic sim-

ulations that resolve the accretion streams onto individual bodies, at least for

the eB = 0 case. Beyond about 10aB, Ṁ ≈ Ṁ0 at all times. From just beyond

the inner boundary to about 10aB, the sign of Ṁ continuously alternates with

tiime, indicating that, instantaneously, mass may be flowing inwards (towards

the binary) or outwards (away from it). In a time-averaged sense, Ṁ is positive

everywhere, so mass flows toward the binary on average (see Section 6.7). For

the eB = 0.8 case (see the bottom panel of Fig. 6.4), Ṁ varies only at ΩB, and its

maximum amplitude is about 5 times smaller than for the circular case. As in

the case of the circular binary, Ṁ is strictly positive near the inner boundary, as

well as sufficiently far from the binary (r & 6aB), but can have either positive

or negative sign at intermediate distances. This “sloshing” effect (fluctuation in

the magnitude and sign of Ṁ), which is largest at ∼ 3aB, and largest overall for

circular binaries, is responsible for the variations in the azimuthally-averaged

surface density profiles shown in Fig. 6.2.

Of particular interest is the variability of the mass accretion rate at rin, which

we take to represent the actual accretion rate onto the binary (this is subject to

the validity of the diode boundary condition). The different behaviors are illus-

trated in Fig. 6.5, which shows Ṁ(rin, t), and its power spectrum, for equal mass

binaries with various eccentricities. The top row demonstrates the transition

from the circular binary behavior to the eccentric binary behavior. For eB = 0,

the same variabilities seen in Fig. 6.4 are evident: large amplitude “bursty” fluc-

tuations at about ΩB/5, and smaller amplitude fluctuations at 2ΩB. For eB = 0.05,

the behavior is similar to that of the eB = 0 case, although the ΩB/5 spike in the

power spectrum is somewhat less distinct, and additional low-frequency com-

ponents are present. For eB = 0.1, the variability behavior becomes drastically
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different, and is dominated by oscillations at ΩB and 2ΩB. The power spectrum

is much cleaner than for the lower values of eB, only having peaks at these two

frequencies. Therefore, the accretion rate only exhibits low-frequency (sub-ΩB)

variability for eB . 0.05. The bottom two panels of Fig. 6.5 demonstrate that

the simple variability at only ΩB is the typical behavior for all higher values of

eB. The exception is the case of eB = 0.4, for which the accretion rate variability

appears less clean, and has small additional components present in the power

spectrum (at about 0.5 and 1.5 times ΩB). This intermediate eB is also associ-

ated with other unique behaviors, including periapse locking of the disk with

the binary (see Section 6.5), large gravitational torques, and low level of angular

momentum transfer to the binary (see Section 6.7).

6.4.2 Lump at Inner Edge of Disk

The variability of Ṁ(rin, t) for circular and slightly eccentric binaries (eB . 0.05)

is associated with the presence of a lump at the inner edge of the disk, which

is not present for higher values of eB. The periodic creation and destruction of

this lump, with a period corresponding to the Keplerian orbital period at about

2.8aB, is temporally coincident with the modulation of Ṁ(rin, t) with the same

period (MacFadyen & Milosavljević 2008; Shi et al. 2012; D’Orazio et al. 2013;

Farris et al. 2014; Muñoz & Lai 2016). The lump cycle is illustrated in the left

two panels of Fig. 6.6 (note that the time interval shown here corresponds to

the first 5 orbits shown in the leftmost panel of Fig. 6.5). After its creation, the

lump rotates for about a third of an orbit before it is torn apart and flung to-

wards the inner boundary. A new lump is then created by the accumulation

of streams from the central cavity, and the cycle repeats. In Fig. 6.1, a lump,
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Figure 6.6: Left: Surface density snapshots illustrating one cycle of the creation
and destruction of the lump at the inner edge of the disk for a circular binary.
The six snapshots are evenly separated by 1/5 of the approximate period of the
lowest frequency component of the power spectrum of Ṁ(rin) (the exact period
is 4.72PB). In the first two panels, the lump is visible, orbiting at approximately
the local Keplerian frequency. In the next panel, it has been sheared apart, and
only a trace of it is left. This panel corresponds to the time at which the mass
accretion rate onto the binary reaches its peak. In the fourth and fifth panels,
the lump can be seen re-forming due to a pileup of streams emanating from the
central cavity. Finally, in the last panel, the lump has reappeared, and is very
close to its original position shown in the first panel. Right: Same as the left
panels except for an eB = 0.8 binary. The relative steadiness of the disk over the
same interval of time can be clearly seen. Spiral density waves, which pile up
at the disk apocentre (near the top of each panel), are also visible. They appear
very similar in different snapshots, which are separated by approximately one
binary orbital period. However, small differences of the phase of the innermost
density wave/accretion stream can be seen because they are not exactly one
orbit apart. No sign of a lump can be seen in this case. The presence or absence
of a lump correlates with the presence or absence of ΩB/5 modulation of the
accretion rate. See Section 6.4.2.
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Figure 6.7: Mass accretion rate as a function of time (as in Fig. 6.5, but without
the associated power spectra) for circular binaries (eB = 0), for different mass
ratios, and different values of α. The leftmost panel, with qB = 1.0 and α = 0.1, is
repeated from Fig. 6.5. For equal mass binaries, low-frequency (ΩB/5) accretion
modulation occurs indepedently of the value of α. For non-equal mass binaries,
it also occurs, although somewhat modified, for qB = 0.5, but is gone for qB = 0.2,
and is replaced instead by modulation at ΩB only. See Section 6.4.3.

though slightly less well-defined, can also be seen for eB = 0.05, which also dis-

plays low-frequency (∼ ΩB/5) accretion variability. For comparison, the right

two panels of Fig. 6.6 show the disk around an eccentric binary over the same

interval of time as shown in the left two panels. The lump feature is clearly not

present. Only spiral density waves and accretion streams, which look remark-

ably similar from one orbit to the next, can be seen. This demonstrates why the

variability of the accretion rate at rin for eccentric binaries is essentially a clean

sinusoid whose period matches that of the binary.

The fact that a lump appears in simulations with eB . 0.05, but not for larger

values of eB, indicates that it is a sensitive structure. Disks around circular bi-

naries experience gravitational forcings which have pattern frequencies equal

to the binary orbital frequency only. For eccentric binaries, there are many ad-

ditional forcings, having both larger and smaller pattern frequencies, which be-

come stronger with increasing eB. The fact that the lump disappears above a

very small value of eB may indicate that it is easily destroyed (or prevented
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from forming) by these additional forcings.

6.4.3 Dependence on Binary Mass Ratio

Figure 6.7 shows Ṁ(rin, t) for simulations with circular binaries, with different

values of qB and α. They all exhibit low-frequency (∼ ΩB/5) variabilities, except

for the case of qB = 0.2, whose accretion rate varies only at a frequency of ΩB,

with weak modulation at 2ΩB, somewhat resembling the behavior of an eccen-

tric binary. Figure 6.1 shows that this is also the only disk around a circular

binary in our runs that does not have a lump feature. Therefore, the presence

of a lump and associated low-frequency accretion variability not only requires a

small binary eccentricity, but also a sufficiently large mass ratio (qB & 0.2). This

dependence on mass ratio was also pointed out by Farris et al. (2014).

6.5 Long Time-Scale Variability: Disk Eccentricity and Preces-

sion

Having studied the short-term (∼ PB) variabilities of the circumbinary accretion

in Section 6.4, we now investigate variabilities of the disk on time-scales � PB.

To this end, we examine the m = 1 Fourier component of the radial velocity ur,

and compute its power spectrum,

|ũr,m=1|
2(r, ω) =

∣∣∣∣∣∣ 1
t2 − t1

∫ t2

t1

∮
ur(r, φ, t)ei(φ−ωt)dφdt

∣∣∣∣∣∣2 , (6.8)

where t1 = tend−2000PB to t2 = tend. Figure 6.8 shows the results for three different

values of eB. We choose ur,m=1 as a diagnosis of an eccentric disk, because an
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(with qB = 1.0 and α = 0.1 in all three cases). The dashed line in each panel
corresponds to the precession frequency of a test particle due to the binary
quadrupole potential, $̇Q (Eq. 6.9). The presence of spatially coherent power
for eB = 0.0 and eB = 0.8 corresponds to a global precessional mode. Such a
mode is conspicuously absent for eB = 0.4 (note that the apparent power near
zero frequency is spurious, as it corresponds to periods longer than the interval
over which the power spectrum was taken). In the cases for which this mode
is present, its frequency corresponds to $̇Q at r ≈ (3 − 5)aB, the approximate
location of rpeak.
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Figure 6.9: Examples of the two different behaviors of the disk eccentricity (pre-
cession and apsidal locking) for different binary eccentricities (see Section 6.5).
The disk eccentricity (magnitude of the mass weighted, azimuthally averaged
eccentricity vector; left panels) and argument of pericentre (phase of the mass
weighted, azimuthally averaged eccentricity vector; right panels) are shown as
a function of time (x-axis) and radius (y-axis), for different values of eB (0, 0.4,
and 0.8; different rows), all for qB = 1 and α = 0.1. The hatching in the bottom
of the plots in the middle and bottom rows indicate that the computational do-
main does not extend all the way to r/aB = 1 (instead, the inner disk edge is
at rin/aB = 1 + eB). Coherent precession of the inner eccentric disk [(2 − 10)aB],
as indicated by vertical strips in the right panels, is clearly seen for both eB = 0
and 0.8. For eB = 0.4, the pericentre of the inner eccentric disk instead remains
aligned with the binary (note that $−$B equal to either 0 or ±π indicates align-
ment, since the two values are degenerate for the equal mass binary shown
here). Note that the range of the time axis is the same in the top and bottom
panels (thus the precession periods can be compared visually), but it is more
than twice as long in the middle panel, demonstrating that $ is truly static in
this case, on time-scales much longer than the precession periods seen in the
other cases. The alignment for the eB = 0.4 case is also associated with smaller
disk eccentricity (by a factor of ∼ 2) at r ∼ (3 − 10)aB.
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Figure 6.10: Orbital elements of the fluid elements (grid cells) in the disk, only
5 per cent of which are shown, at several points in time, for equal mass bina-
ries with eB = 0.0 (top row), 0.4 (middle row), and 0.8 (bottom row). The radial
distance of a point from the origin indicates its semi-major axis, its polar an-
gle represents its pericentre orientation (where the binary line of apses is along
the x-axis), and its colour indicates its eccentricity. In all three cases, there are
three distinct populations of fluid elements: (i) those with nearly circular orbits
(e . 0.02), large semi-major axes (a & 6aB), and no preferred pericentre orien-
tation, corresponding to a circular disk; (ii) those with moderate eccentricites
(0.03 . e . 0.15) and semi-major axes between 3aB and 6aB, with pericentres
clustered around one particular direction at a given time, representing a co-
herently eccentric part of the disk which precesses (top and bottom rows), or
remains locked with the binary (middle row); and (iii) those with very high ec-
centricity (e ≈ 1) and a . 3aB, which represent material plunging toward the
binary on nearly radial orbits (accretion streams). For eB = 0.0 and 0.8, the
streams are nearly isotropic in $, while for eB = 0.4, they appear to have two
preferred orientations that remain fixed in time.
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eccentric orbit is characterized by the m = 1 pattern in ur, which may precess

(rotate) at a frequency much slower than the local orbital frequency. The power

spectrum of the same Fourier component of another fluid variable, such as Σ,

would also reveal the same periodicity (due to mass continuity), but we choose

ur since its equilibrium value is nearly zero (except for a small viscous drift). We

see that for the eB = 0.0 and eB = 0.8 cases, the power spectrum is concentrated

in a feature with a frequency of a few thousandths of ΩB, which is coherent

over a large range of radii. Weaker features at harmonics of this fundamental

frequency can also be seen. Also shown in Fig. 6.8 is the apsidal precession

rate of a test particle (on a nearly circular orbit) due to the binary quadrupole

potential (e.g., Liu et al. 2015a, Eq. 20),

$̇Q =
3
4

qB

(1 + qB)2

(
1 +

3
2

e2
B

) (
r

aB

)−7/2

ΩB. (6.9)

The features in the power spectrum for eB = 0 and eB = 0.8 have frequencies

close to $̇Q evaluated in the vicinity of rpeak. Given the steep radial dependence

(r−7/2) of $̇Q, the exact value of r at which the two quantities are equal is not

particularly meaningful. However, the fact that the frequency of the feature is

similar to the range of $̇Q near the inner edge is significant, since it indicates

that the feature is associated with the coherent precession of the inner disk. For

eB = 0.4 (the middle panel of Fig. 6.8), this feature is conspicuously absent,

indicating that the long-term dynamics of the disk are different in this case.

We investigate the eccentricity dynamics further by treating each grid cell as

a test particle orbiting in the potential of the binary and, converting its instan-

taneous position (r, φ) and velocity (ur, uφ) into orbital elements (a, e, $), using

energy conservation (the “vis-viva equation”),

a(r, φ, t) =

(
2
r
−

u2

GMB

)−1

, (6.10)
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and the (Runge-Lenz) eccentricity vector,

e(r, φ, t) =
u2r − (u · r)u

GMB
− r̂, (6.11)

where e = [e cos($), e sin($)]. We then use the mass-weighted azimuthal aver-

age of the eccentricity vector,

〈e〉φ(r, t) =

∮
Σ(r, φ, t)e(r, φ, t)dφ∮

Σ(r, φ, t)dφ
, (6.12)

to define the average eccentricity e and pericentre angle$ at each r, as a function

of t. The result is shown in Fig. 6.9, for simulations with three different binary

eccentricities.

The eccentricity dynamics falls into one of two regimes. In the first regime

(eB = 0.0 and 0.8 in Fig. 6.9), the eccentric portion of the disk undergoes coherent

apsidal precession. The precession periods can be identified with those shown

in Fig. 6.8. In the second regime (eB = 0.4), the eccentric disk keeps its line of ap-

sides aligned with that of the binary. The distinction between the two regimes

is unambiguous. In the second regime, not even a very slow pericentre ad-

vance, on the time-scale of the entire simulation (8000 orbits for the case shown

in Fig. 6.9), is seen. Instead, the disk pericentre stays truly aligned with that of

the binary indefinitely. Apsidal alignment of the disk and binary was also re-

ported by Lubow & Artymowicz (2000) and Pierens & Nelson (2007), although

only for an unequal mass binaries. To our knowledge, apsidal alignment with

an equal-mass binary–which does not have an octupole potential and cannot

excite eccentricity in the secular regime (see Section 6.6.1)–has not been seen in

numerical simulations before. Table 6.1 indicates whether the disk precesses or

remains aligned with the binary, as well as the precession period, where appli-

cable, for each simulation.
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The distinction between the precessing and aligned regimes is further high-

lighted in Fig. 6.10, which shows snapshots of fluid elements in the disk in the

(a, e, ω) phase space at several points in time, for the same cases as shown in

Fig. 6.9. In all three cases, the presence of a coherently eccentric inner disk man-

ifests as the clustering of fluid elements in $. In the precessing case, the cluster

can be seen to rotate (by about 2/3 and 1/3 of a full rotation, for eB = 0.0 and

0.8), over the 200PB interval shown, while in the aligned case, the cluster re-

mains at the same $ as time progresses. In this figure, there is a distinction

between two different populations of fluid elements, one with e ∼ 0.01 − 0.2

(what we call the eccentric disk proper, between about 3 and 6aB, represented

by yellow/green dots), and another with e ∼ 1 (red dots), which corresponds

to streams penetrating the inner cavity on nearly radial orbits. In the precess-

ing case, the streams do not have of a preferred orientation in $, while for the

aligned case, there are two strongly preferred directions (both ∼ 45◦ from the

binary line of apsides). This explains the apparent discontinuity in the average

$ of the disk close to the binary (r/aB . 2) seen in Fig. 6.9: it is an artefact of the

accretion streams, rather than of the eccentric disk proper, which does not exist

close to the binary. The restricted orientation of the streams in the aligned case

(eB = 0.4) may be associated with the reduced rate at which angular momentum

is transferred to the binary (see Section 6.7).
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Figure 6.11: Eccentricity (top) and pericentre longitude (bottom) evolution for
a test particle with semi-major axis a = 3.5aB orbiting an eccentric binary with
eB = 0.4 (see Section 6.6.1). Two binary mass ratios are shown, qB = 0.5 (left),
and 1.0 (right). The orange lines are the results of integrations of the secular
equations of motion (Eqs. 6.13, 6.14, and 6.16). The black lines are the results of
integrations of the non-secular equation of motion (Eqs. 6.17 and 6.18), and the
green lines indicate the e and $ of the running time average of the eccentricity
vector (from the same integrations), taken over the interval (t − 5PB, t + 5PB) for
each t. The running average filters out short term variation in order to assess
whether $ is circulating or librating. For qB = 0.5, the balance of the eccentricity
excitation by the binary octupole potential and viscous damping (modeled by
Eq. 6.16 or Eq. 6.18) results in the test particle settling into a finite eccentricity
orbit with its pericentre aligned with that of the binary. For qB = 1.0, the lack of
eccentricity excitation by an octupole potential results in pure damping of the
eccenticity: the test particle evolves towards a circular orbit, while $ continues
to circulate indefinitely (although becoming increasingly less well-defined due
to the very small e). The same behavior is seen for both the secular equations
and non-secular equations, indicating that short time-scale dynamical forcings
from the binary do not modify the long-term evolution of the particle.
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Figure 6.12: Disk eccentricity and longitude of pericentre, as a function of time
and radius (as in Fig. 6.9), as calculated from the one dimensional linear fluid
eccentricity equation (Eq. 6.19), with eccentricity driven at two eccentric Lind-
blad resonances (ELRs; see Section 6.6.2). Three different binary eccentricities
are shown. In all cases, the binary has qB = 1.0, and the disk has h = 0.1 and
αb = 0.1 (as in our numerical simulations, except that the shear viscosity pa-
rameter α is replaced by a bulk viscosity parameter αb). For eB = 0.0 (top),
the disk eccentricity grows as a result of driving at the Ω = ΩB/2 ELR, and the
disk precesses. Similarly, for eB = 0.8 (bottom), eccentricity grows as a result
of driving at the 1/4 ELR, and the inner disk [(1.5 − 6)aB] precesses coherently.
For eB = 0.45, the eccentricity drivings at both ELRs are too weak to overcome
viscous damping, so no eccentricity growth is observed, and the propagation
of the eccentricity wave is damped, resulting in a halting of apsidal precession.
This behavior may explain the similar qualitative trend seen in our numerical
simulations, shown in Fig. 6.9.
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6.6 Theoretical Explanations for Disk Eccentricity Excitation,

Precession, and Apsidal Locking

In Section 6.5, we presented numerical results demonstrating that the inner re-

gion of a circumbinary disk generally becomes eccentric and evolves coherently.

We showed that, for both low and high values of eB, the pericentre of the disk

precesses coherently around the binary. However, for intermediate values of eB,

the disk instead becomes apsidally locked with the binary. This result is puz-

zling and unexpected, and so in this section, we explore several possible theo-

retical explanations for this behavior. This section is self-contained, and can be

skipped if the reader wishes to continue on to the presentation of the rest of our

numerical results, which resumes in Section 6.7.

6.6.1 Test Particle Dynamics

We first take the simplest approach, considering the dynamics of a test particle

which orbits the binary, and which is subject to the tidal potential of the binary

as well as a parametrized “frictional” eccentricity damping force.

Secular Dynamics

The long-term dynamics of the particle may be described using the secular ap-

proximation, in which the orbital motion of both the binary and the particle

are averaged out. The resulting orbital evolution of a free particle, to octupole
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order, is given by (e.g., Liu et al. 2015b2)

1
ΩK

de
dt

= −
15
64

qB(1 − qB)
(1 + qB)3

(aB

a

)3 eB(4 + 3e2
B)

(1 − e2)2 sin($ −$B), (6.13)

1
ΩK

d$
dt

=
3
8

qB

(1 + qB)2

(aB

a

)2 (2 + 3e2
B)

(1 − e2)2

−
15
64

qB(1 − qB)
(1 + qB)3

(aB

a

)3 eB(4 + 3e2
B)(1 + 4e2)

e(1 − e2)3

× cos($ −$B).

(6.14)

In general, the particle and the binary exchange angular momentum (although

the amount gained or lost by the binary is negligible in the test particle limit),

resulting in oscillations of the eccentricity of the particle, which in the linear

regime (e, eB � 1), has an amplitude of

eforced =
5
8

(
1 − qB

1 + qB

)
aB

a

(
4 + 3e2

B

2 + 3e2
B

)
eB (6.15)

(e.g., Moriwaki & Nakagawa 2004). To model the effect of eccentricity damping

(e.g., due to viscosity), we add the following term to the right hand side of

Eq. (6.13),

ėdamp = −
e

td,s
, (6.16)

where td,s is the eccentricity damping time-scale. In the presence of eccentricity

damping, the particle can evolve towards a fixed state in which $ −$B = 0 and

e ≈ eforced (e.g., Wu & Goldreich 2002). This apsidal alignment can occur only if

eforced , 0, which requires that qB < 1 and eB > 0 (i.e., the binary octupole poten-

tial is non-zero), otherwise the eccentricity of the test particle will continually

precess as its eccentricity asymptotically approaches zero.

Figure 6.11 shows several examples of the secular evolution of a test particle

subject to eccentricity damping. In these examples, the semi-major axis of the

2We have corrected typos in the relevant equations of Liu et al. (2015b): in Eq. (12), (1− e2
2)5/2

should be (1 − e2
2)2, and in Eq. (14), (4 + 3e1) should be (4 + 3e2

1).
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particle is chosen to be a = 3.5aB, and the eccentricity damping time is td,s =

15/$̇Q (see Eq. 6.9). For the unequal mass binary, the argument of pericentre

of the test particle undergoes several precession cycles, before librating around

that of the binary with a decreasing amplitude, until it is essentially aligned with

the binary. The eccentricity of the particle oscillates and eventually approaches

a fixed value of 0.04 ≈ eforced. For the equal-mass binary, the eccentricity simply

approaches zero, while the argument of pericentre precesses indefinitely.

In this secular framework, an unequal mass binary is required to produce

apsidal alignment. This may explain the alignment seen in one of our numer-

ical simulations, with (qB, eB, α) = (0.2, 0.4, 0.1). However, it cannot explain the

alignment seen in several of our simulations with equal mass binaries.

Non-Secular Dynamics

Since secular theory cannot produce apsidal alignment without a non-zero oc-

tupole potential, we now consider the non-secular (i.e., non-orbit-averaged) dy-

namics of a test particle. This is potentially useful, since the fluid elements of

the eccentric disk have semi-major axes which are only a few times that of the

binary (a/aB ≈ 3 − 6), so the short-term (orbital time-scale) forcings from the bi-

nary are not necessarily negligible compared to the long-term, secular forcings.

The short-term forcings may give rise to additional eccentricity excitation which

is not captured in the secular approximation.

The equation of motion of a test particle (with position vector r) reads

r̈ = −∇Φ + fd, (6.17)

where Φ is the (time-dependent) gravitational potential of the central binary. We
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take the damping force fd to be of the form

fd = −
1

td,ns

[
3(r̂ · ṙ)r̂ + (r̂ × ṙ − rΩp) × r̂

]
, (6.18)

with Ωp = (|ṙ|/|r|)ẑ (e.g., Mardling & Lin 2002). This form of fd ensures that a

circular orbit does not decay. We find that choosing td,ns = 2.5td,s results in the

same eccentricity damping rates between the secular and non-secular equations.

Thus we adopt td,ns = 37.5/$̇Q in the following numerical examples.

Figure 6.11 shows some numerical results based on integrating Eq. (6.17).

The particle starts at 3.5aB, with a small eccentricity. The eccentricity and argu-

ment of pericentre exhibit large amplitude, short-time-scale fluctuations, but on

average are very similar to the corresponding secular results. In particular, for a

non-equal mass binary, the particle becomes apsidally aligned with the binary,

with a finite eccentricity, although still exhibiting fast, order unity fluctuations.

The average value of the eccentricity is slightly larger than in the secular calcula-

tion due to these fluctuations. For the equal mass binary, the orbital evolution of

the test particle is also very similar to the secular calculation. Despite the large

amplitude, fast fluctuations, the initial eccentricity of the particle is smoothly

damped, and its argument of pericentre continues to precess. Although the

average eccentricity becomes vanishingly small, it can still be as large as 0.05

instantaneously, indicating that there is some some additional eccentricity exci-

tation by the non-secular forcings from the binary. However, there is no sign of

apsidal alignment for the equal mass binary. We conclude that the additional

short-term forcings cannot explain the apsidal alignment of a disk around an

equal mass binary.

We note that the results presented in Fig. 6.11 do not include the effect of

mean motion resonances, which likely plays an important role in eccentricity
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excitation of the disk. In the following subsection, we consider the dynamics of

a fluid disk, including resonant eccentricity excitation.

6.6.2 Linear Fluid Dynamics of Eccentric Disks

The dynamics of an eccentric fluid disk can be formally described using lin-

ear perturbation theory, in which eccentricity propagates as a slow, one-armed

(m = 1) density wave. The equation describing the evolution of the complex

eccentricity vector E = e exp(i$) is (Goodchild & Ogilvie 2006)

2rΩ
∂E
∂t

= −
iE
r
∂

∂r

(
r2∂Φ2

∂r

)
+

iE
Σ

∂P
∂r

+
i

r2Σ

∂

∂r

[
(1 − iαb)Pr3∂E

∂r

]
+

∑
i

2aBγirΩEδ(r − rres,i),

(6.19)

where

Φ2 = −
GMB

4aB

qB

(1 + qB)2

(
1 +

3
2

e2
B

) (
r

aB

)−3

(6.20)

is the (time-independent) quadrupole component of the binary potential. The

first two terms on the right-hand side of Eq. (6.19) describe precession due to the

potential and gas pressure, respectively, and the third term describes the diffu-

sion of eccentricity through the disk (with αb characterizing the disk viscosity).

The fourth term describes the growth of eccentricity at various resonances, each

having a growth rate γi, and which are idealized as infinitely narrow (i.e., δ

functions) in r.

The binary potential can be decomposed into Fourier components,

Φ(r, φ, t) =
∑
m,N

Φm,N cos(mφ − NΩBt), (6.21)
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where Φm,N is the strength of the potential component having azimuthal num-

ber m, rotating with pattern frequency ωP = NΩB/m. Eccentricity can be excited

in the disk at eccentric Lindblad resonances (ELRs), whose locations are deter-

mined by the criterion

Ω =
mωP

m + 2
, (6.22)

and which have growth rates γm,N that are proportional to Φ2
m,N (Lubow 1991).

We specialize to equal-mass binaries, which have a vanishing m = 1 poten-

tial component, and for which the 1:3 ELR (e.g., Lubow 1991; Papaloizou et

al. 2001; Fleming & Quinn 2017) does not exist. Thus, resonances with m = 2

are the strongest, since Φm,N ∝ r−m−1. For a circular binary, only the Φm,m’s are

non-zero, i.e., the only possible pattern frequency is ωP = ΩB. Thus, the most

important resonance corresponds to the Ω = ΩB/2 commensurability (located at

r = 1.59aB), and its growth rate is proportional to Φ2
2,2. Resonances with higher

values of m are not important, as they are located very close to the binary, where

the flow deviates strongly from Keplerian. For eccentric binaries, resonances

with different pattern frequencies exist. Those with ωP > ΩB are not relevant,

since they are located inside the disk truncation radius. However, those with

ωP < ΩB are located at larger radii, and can be important. The second most im-

portant resonance is associated withωP = ΩB/2, which is located at the Ω = ΩB/4

commensurability (r = 2.52aB) and has a growth rate proportional Φ2
2,1.

The strengths of the m = 2 potential components, to quadrupole order, eval-

uated at the ELRs, are

Φ2,N (rELR) ≈ −
3N2

64
CN

GMB

aB

qB

(1 + qB)2 , (6.23)

where the relevant coefficients, to order e2
B, are given by C2 ≈ 1 − 5e2

B/2 and

C1 ≈ −3eB (note that CN corresponds to the notation CCB
2,2,N−2 used in Miranda &
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Lai 2015). For simplicity, we choose

γ0 ≡ γ2,2

∣∣∣
eB=0

= 2
q2

B

(1 + qB)4 ΩB (6.24)

as an ansatz for the normalization of the ELR growth rates, using the result of

Lubow (1991), where we have set the factors related to the disk geometry and

resonance width to unity. We then have

γ2,2 =
(
1 − 5e2

B

)
γ0, (6.25)

for eB < (1/5)1/2 (otherwise γ2,2 = 0), and similarly,

γ2,1 =
9

16
e2

Bγ0. (6.26)

We investigate the dynamics of eccentric disks driven by these two ELRs by

integrating Eq. (6.19), discretized on a uniformly spaced grid (with ∆r = 0.05aB),

using a fourth-order Runge-Kutta method. As in our simulations, we adopt the

locally isothermal equation of state, cs(r) = 0.1rΩK, viscosity parameter αb = 0.1,

and choose the inner boundary to be rin = (1 + eB)aB. The outer boundary

is at 10aB. Zero gradient conditions are imposed in the complex eccentricity

(∂E/∂r = 0) at both boundaries, and a damping zone, which relaxes E to its ini-

tial condition on the orbital time-scale of the outer boundary, is imposed in the

outer 25 per cent of the domain in order to mimic an outgoing wave boundary

condition. The background surface density is adapted from the time averaged,

azimuthally averaged profiles shown in Fig. 6.2, for the appropriate binary pa-

rameters.

The results of our one dimensional, eccentric fluid disk experiments are

shown in Fig. 6.12. For eB = 0, the disk eccentricity grows with time, and its

pericentre precesses coherently. The precession period is similar to the one seen
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in the numerical simulations. A kink feature in $ at the location of the inner

resonance, similar to the one seen in the full numerical simulations (Fig. 6.9),

is also reproduced. For eB = 0.45 (this value is chosen because we found that

the disk still precesses for eB = 0.4 in our 1D model), the eccentricity does not

grow, but rather the initial profile of e is reconfigured into a new equilibrium

profile, which does not subsequently change with time. The argument of peri-

centre of the inner disk can be seen to precess through several cycles, with a

shorter period than for eB = 0, before eventually settling into a fixed (but r-

dependent) orientation. For eB = 0.8, the disk eccentricity again grows, and the

disk precesses, although with a period that is several times shorter than the one

seen in the numerical simulations. Thus, our 1D eccentric disk model based on

Eq. (6.19) with two resonant driving terms captures many of the key features

seen in the full numerical simulations.

The behavior of our 1D model can be qualitatively understood as follows. In

the local (WKB) limit, E ∝ eiωt−ikr, far from the central binary, and far from any

resonances, Eq. (6.19) reduces to

ω = −
(1 − iαb)

2
k2c2

s

Ω
, (6.27)

which is the dispersion relation for local spiral density waves, (ω − mΩ)2 =

Ω2 + k2c2
s , in the limit of low frequency (ω � Ω), and with m = 1, with the addi-

tion of viscous damping. If the strength of eccentricity driving at a resonance is

not strong enough to overcome viscous damping, then not only will the eccen-

tricity not grow, but the wave will not propagate, meaning that no precession

will occur. The strength of the the inner (Ω/ΩB = 1/2) resonance is a decreasing

function of eB, while that of the outer resonance (Ω/ΩB = 1/4) is an increasing

function of eB. Therefore, for small values of eB (including zero), the inner res-

onance is strong and can effectively drive eccentricity growth and precession
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in the disk. For sufficiently large values of eB, the inner resonance is weak (or

has shut off entirely), while the outer resonance is strong, and can drive eccen-

tricity growth and precession. For intermediate eB, neither resonance is strong,

and so the complex eccentricity E freezes out. Thus, our 1D model qualitatively

explains two features in our numerical simulations: i) the lack of precession

for intermediate values of eB, and ii) the associated reduced disk eccentricity,

compared to the cases of low or high values of eB.

There are several caveats to consider when comparing our 1D eccentric disk

models (Fig. 6.12) and full 2D simulations (Fig. 6.9). First, the linear treatment

in the 1D model only captures eccentricity growth (which occurs for precessing

disks) or non-growth (for non-precessing disks), and cannot capture its satu-

ration, which presumably occurs due to non-linear effects. In our 2D simula-

tions, eccentricity always grows and settles to some equilibrium value (actually

a range of values at different locations in the disk), although it is smaller by

approximately a factor of 2 in the apsidally aligned regime, compared to in the

precessing regime. Second, the argument of pericentre $ in Eq. (6.19) is only

defined relative to an arbitrary reference angle, rather than with respect to the

binary argument of pericentre $B. This is a consequence of considering the bi-

nary gravitational potential only to quadrupole order (this is appopriate, since

here we are focusing on equal mass binaries, for which the octupole potential

vanishes). As a result, when precession of the disk is halted in our 1D model

(the middle panel of Fig. 6.12), the value of $ at which it freezes out is also ar-

bitrary. Therefore, true alignment of the disk pericentre with that of the binary

is not captured in this 1D approach.
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6.7 Long-Term Mass Accretion and Net Angular Momentum

Transfer

In this section, we use our simulations to determine the long-term net angular

momentum transfer rate from the disk to the binary, taking into account mass

accretion and gravitational torques. Given the large variabilities of the disk ac-

cretion on various time-scales (see Sections 6.4 and 6.5), it is essential that the

simulations be carried out over sufficiently long times so that the disk reaches a

true quasi-steady state in terms of mass accretion.

6.7.1 Evolution of Global Mass Accretion Rate Profile

Figure 6.13 (top panel) shows examples of both instantaneous radial profiles of

Ṁ (computed using piecewise parabolic reconstruction of the fluid variables),

as well as its time-averaged profile. In these examples, the time-averaged pro-

file is computed over an interval of 250PB (approximately the disk precession

period). We see that the instantaneous Ṁ profiles exhibit large fluctuations (in

both magnitude and sign), with an amplitude 20−60 times larger than the mass

supply rate Ṁ0. Nonetheless, the average Ṁ profile is very flat, such that its

fluctuations are not visible when plotted on the same scale as the instantaneous

profiles. Note that in Fig. 6.13, some of the sharp peaks in the instantaneous

profiles are captured by only a few grid points. In our high resolution runs, we

find that the amplitude of these features are somewhat reduced, as is the ampli-

tude of those in the averaged profiles. Our standard resolution runs typically

achieve an accuracy of about 10 per cent in the averaged Ṁ.
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Figure 6.13: Radial profiles of the mass accretion rate (top) and net angular mo-
mentum accretion rate (bottom) for the simulation with qB = 1, eB = 0, and
α = 0.1. The solid lines are instantaneous profiles, at 50 different times, sampled
over two 5PB intervals 125PB apart. The dashed lines are the time-averaged
profiles, taken over 250PB. Although there are large fluctuations in these quan-
tities both in time and radius, suitable time averaging results in remarkably flat
profiles for both.
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Figure 6.14: Long-term time evolution of the profiles of the mass accretion rate,
Ṁ, and the ratio of the angular momentum and mass accretion rates, J̇/Ṁ, for
equal mass binaries with different values of eB and α. Both Ṁ and J̇ profiles
are averaged over approximately one precession period [about (300 − 600)PB,
for cases in which the disk precesses around the binary], or 50PB (for cases in
which the disk is apsidally locked to the binary), starting from the indicated
time. The range of the y-axis varies between different panels, in order to focus
on the residual radial variations in the profiles of the two quantities after time
averaging. Note that the residual variations are much smaller than the instanta-
neous variations depicted in Fig. 6.13. From the time-averaged profiles, we see
that 1) Ṁ in the inner disk is very close to, but smaller than, the rate supplied at
the outer boundary, and slowly approaches it with time, and 2) J̇/Ṁ approaches
a steady value in the inner region of the disk, and the size of this region grows
with time. Together, these indicate that an ever-growing region of the inner disk
is approaching a self-consistent quasi-steady state.
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Figure 6.18: Time averaged profiles of Ṁ and J̇/Ṁ at several different times, as
in Fig. 6.14, for two “unusual” cases (those which result in a minimum values of
J̇/Ṁ at the inner disk; see Fig. 6.19). These are shown for both the original runs
(left), which use the standard initial conditions and outer boundary condition
(see Eq. 6.3), and for the iterated runs (right), for which the initial conditions
and outer boundary condition are prescribed using the value of l0 determined
from the original run. Both are evolved for the same amount of time. In the
iterated runs, both the Ṁ and J̇/Ṁ profiles become flatter throughout the entire
disk compared to the original runs, and the value of Ṁ in the inner disk is closer
to the supply rate. This indicates that the value of l0 = 〈J̇〉/〈Ṁ〉 determined from
the original run is close to the true global steady-state value for the disk.
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l0 = 〈J̇〉/〈Ṁ〉, as a function of eB, for accretion onto equal-mass binaries, for two
different values of the disk viscosity parameter α. These values are determined
by averaging the steady-state profiles of J̇/Ṁ (see Fig. 6.14) from rin to 10aB, and
the error bars quantify the variations in these profiles. We see that l0 is positive
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value at intermediate binary eccentricities (0.4 for the α = 0.1 case, and 0.2 for
the α = 0.05 case) corresponds to the case in which the inner eccentric disk is
apsidally aligned with the binary (see Section 6.5).
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We now focus on the small residual fluctuations in the time-averaged pro-

files of Ṁ. Figure 6.14 shows the results for 10 different simulations, all with

qB = 1.0, and different values of eB and α. The averaging is performed over

either approximately one precession period, with a sampling rate of 5/PB, or

over 50PB, with a sampling rate of 20/PB, for cases in which the inner disks are

apsidally locked. We see that near the end of the simulations, many of the 〈Ṁ〉

profiles have residual fluctuations with an amplitude of 30 per cent or less, and

in some cases, less than 10 per cent. In the worst case, (qB, eB, α) = (1.0, 0.2, 0.05),

the amplitude exceeds 50 per cent. Some of this can be attributed to imper-

fect averaging, and the amplitude can be further reduced with a higher rate of

time sampling. This is demonstrated in Fig. 6.15, in which the sampling rate is

increased to 50/PB, resulting in smaller fluctuations (about 30 per cent in ampli-

tude). No further advantage is gained by increasing the rate to 100/PB. The 〈Ṁ〉

profiles for other cases could also be made flatter with increased an time sam-

pling rate. Thus, the amplitude of the fluctuations in Fig. 6.14 can be considered

an upper limit to the real residual fluctuations. We conclude that, at the end of

each simulation, 〈Ṁ〉 is constant with r to within 30 per cent (or much less), i.e.,

mass is flowing at an approximately steady rate throughout the disk.

We see from Fig. 6.14 that, in general, at a given time, the time-averaged

value of Ṁ at rin is approximately equal to its value at ∼ 10aB. This value rep-

resents the average mass flow rate through the inner disk onto the binary. In

the outer disk, Ṁ smoothly transitions to its value at rout, Ṁ0. At the end of each

simulation, the inner disk 〈Ṁ〉 is typically 80 − 90 per cent of Ṁ0. The small dif-

ference between the inner disk 〈Ṁ〉 and Ṁ0 is a consequence of the “incorrect”

initial disk density profile: Eqs. 6.3 and 6.4 assume that the specific angular

momentum accreted onto the binary is
√

GMBrin. In Section 6.7.2, we show that
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starting with better initial conditions (as determined by the angular momentum

accretion rate) results in the accretion rate profile 〈Ṁ〉 becoming indistinguish-

able from Ṁ0 in a much shorter time.

6.7.2 Net Angular Momentum Transfer Rate to the Binary: Cal-

culation and Result

The rate of net angular momentum transfer across the disk, J̇, is

J̇(r, t) = J̇adv − J̇visc − T>r
grav (6.28)

(see Appendix D). The different terms contributing to J̇ are the rate of change

of angular momentum due to advection,

J̇adv = −

∮
r2Σuruφdφ, (6.29)

the viscous torque,

J̇visc = −

∮
r3νΣ

[
∂

∂r

(uφ
r

)
+

1
r2

∂ur

∂φ

]
dφ, (6.30)

and the (integrated) gravitational torque,

T>r
grav =

∫ rout

r

dTgrav

dr
dr, (6.31)

where
dTgrav

dr
= −

∮
rΣ
∂Φ

∂φ
dφ (6.32)

is the gravitational torque density. In general, J̇ is a function of r and t. However,

in a quasi-steady state state, its time-averaged value, 〈J̇〉, is independent of r, so

that angular momentum flows at a constant rate through the disk and onto the

binary. The quasi-steady state is described by the eigenvalue

l0 =
〈J̇〉
〈Ṁ〉

, (6.33)
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which is the angular momentum per unit mass accreted onto the binary. We

now examine the evolution of 〈J̇〉 towards a steady state, in order to compute

the value of l0 for each simulation.

Angular Momentum Transfer Rate Profile

Figure 6.13 (lower panel) shows examples of the instantaneous and the time-

averaged profiles of the net angular momentum transfer rate, J̇. As in the case

of the Ṁ profiles, the instantaneous fluctuations in J̇ are very large (several or-

ders of magnitude larger than the average value), but the fluctuations in the

time-averaged profile are much smaller. In order to determine that the disk is

evolving towards a quasi-steady state, we must examine these small residual

fluctuations in J̇.

We first look at the contribution to the angular momentum transfer due to

the gravitational torque from the tidal potential of the binary. Although the

radially-integrated gravitational torque is the quantity which contributes to J̇,

it is illustrative to inspect its radial derivative, the gravitational torque density

dTgrav/dr. Examples of its time-averaged profiles and temporal variations are

shown in Fig. 6.16. We see that the magnitude of the torque density is only ap-

preciable for r . 6aB. The torque density is an oscillatory function of r, and

can change sign. Thus, it resembles the wave function of an isolated Lindblad

resonance (e.g., Meyer-Vernet & Sicardy 1987), or the combination of a few reso-

nances. This type of torque density profile is different from the one arising from

the superposition of many Lindblad resonances [e.g., in the impulse approxima-

tion, dTgrav/dr ∝ 1/(r − aB)4; see Lin & Papaloizou 1979], which is only relevant

for small mass ratios, and not the mass ratios considered in our simulations

201



(qB = 0.2 − 1.0).

We now look at the different contributions to J̇. Figure 6.17 shows exam-

ples of the time-averaged profiles of the three terms on the right-hand side of

Eq. (6.28), which are due to advection, viscous torque, and gravitational torque

(the latter being the integral of the quantity shown in Fig. 6.16), as well as the

net angular momentum transfer rate, J̇, for two different simulations. Both sim-

ulations have the same binary and disk parameters, but one uses the standard

inner boundary location adopted in the rest of our simulations (rin = aB in this

case), while the other uses a slightly smaller inner boundary radius, rin = 0.75aB

(in this simulation, a larger number of radial grid cells were used so that both

runs have the same spatial resolution). In both simulations, the profiles of each

of the contributions to J̇ are very similar, and we find the same nearly constant

value of the total 〈J̇〉 in the inner disk. Thus, an equilibrium value 〈J̇〉 is reached

the inner disk, and it does not depend on the location of the inner boundary.

Figure 6.14 shows the 〈J̇〉/〈Ṁ〉 profiles at different times for 10 different sim-

ulations. The fluctuations in these averaged profiles are much smaller than in

the instantaneous profiles depicted in Fig. 6.13. At the end of each simulation,

〈J̇〉/〈Ṁ〉 is nearly constant in the inner part of the disk (r . 10aB). The fluctua-

tions around the average are typically 25 per cent, but in some cases are less than

10 per cent. In the “worst” case, (qB, eB, α) = (1.0, 0.2, 0.05), the fluctuations are

of order unity, although some of this can be attrubuted to the time sampling rate

(see Fig. 6.15). For this reason, we ran this simulation for much longer than oth-

ers (25000PB), in order to ensure relaxation of the inner disk. In all cases, 〈J̇〉/〈Ṁ〉

transitions at large radii (r > 10aB) to its prescribed initial value at rout = 70aB,

corresponding to J̇(rout) = Ṁ0
√

GMBrin (see Eq. 6.3).
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Iterated Runs

Since J̇(rout) is fixed, and since the damping zone near the outer boundary re-

laxes J̇ to this value, 〈J̇〉 in the outermost part of the disk is never equal to 〈J̇〉(rin),

which is computed self-consistently. If we were to run the simulation for a vis-

cous time-scale at the boundary of the damping zone, rdamp = 60aB (∼ 3 × 104PB

for α = 0.1), we would see 〈J̇〉 take on a constant value for rin < r < rdamp, and

transition from this value to J̇(rout) in the damping zone. To produce a true

steady state, in which 〈J̇〉 is constant for all r, an iterative process is required. In

this process, we use the value of 〈J̇〉 to construct the initial conditions and outer

boundary condition of a new simulation [by replacing (rin/r)1/2 in Eq. (6.3) with

l0/
√

GMBr], so that a steady state characterized by l0 is imposed in the outer

disk. Once the inner disk has viscously relaxed, we can achieve a global quasi-

steady state, which has 〈J̇〉(rin) ≈ J̇(rout). We performed this iteration for two

cases: (qB, eB, α) = (1.0, 0.4, 0.1) and (1.0, 0.2, 0.05). These are cases are of particu-

lar interest, as they have the lowest values of l0 (for their corresponding values

of qB and α).

The results of the iterated simulations are shown in Fig. 6.18. In the original

runs, 〈Ṁ〉 at rin evolves slowly towards Ṁ0, reaching a value of ∼ 0.8Ṁ0 at the

end of the simulation, for both simulations shown. In the iterated runs, 〈Ṁ〉 at rin

reaches a value very close to Ṁ0 much sooner, since the initial conditions more

closely match the true quasi-steady state of the disk. In the inner disk, 〈J̇〉/〈Ṁ〉

has a value close to the one in the original runs, but it is much closer to being

constant throughout the entire disk, and the transition to the outer boundary

value is less extreme. Thus, the self-consistent angular momentum transfer rate

calculated for the the inner disk is independent of the artificially imposed value

203



at the outer boundary, and represents the true quasi-steady state of the disk. It

is therefore not necessary to perform this iteration for all of our simulations, as

it does not affect the profile of 〈J̇〉/〈Ṁ〉 in the inner disk (i.e., the value of l0).

Value of the Eigenvalue l0

We have shown that nearly constant profiles of 〈J̇〉 and 〈Ṁ〉, representing a

quasi-steady state, are achieved in the inner disk at the end of our simulations.

Thus, we now compute the value of the eigenvalue which characterizes the

quasi-steady state, l0, for each simulation. In a perfect quasi-steady state, in

which 〈J̇〉 and 〈Ṁ〉 are independent of r, l0 is given by Eq. (6.33). Since, in our

simulations, 〈J̇〉 and 〈Ṁ〉 are not truly independent of r, we compute the value

of l0 by taking the radial average of 〈J̇〉/〈Ṁ〉 between rin and rcut = 10aB,

l0 =
1

rcut − rin

∫ rcut

rin

〈J̇〉(r)
〈Ṁ〉(r)

dr, (6.34)

using 〈J̇〉 and 〈Ṁ〉 at the end of each simulation. We also compute the standard

deviation of 〈J̇〉/〈Ṁ〉 over the same radial interval,

∆l0 =

 1
rcut − rin

∫ rcut

rin

[
〈J̇〉(r)
〈Ṁ〉(r)

− l0

]2

dr


1/2

, (6.35)

in order to quantify the systematic uncertainty in l0.

The results are given in Table 6.1 and shown in Fig. 6.19 for simulations with

equal mass binaries (the values of l0 for the rest of our simulations are only

given in Table 6.1). We see that l0 almost always has a positive value3. Thus,

3Figure 6.19 contains an additional point, corresponding to the case (eB, α) = (0.15, 0.05),
which is not analysed in detail in the other numerical results sections. This case, which was
evolved for 10000PB, was found to have a negative value of l0. It serves to demonstrate that the
calculation of l0 for the case (eB, α) = (0.2, 0.05), which would otherwise be the only occurrence
of a negative l0, is not spurious.
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on average, the binary gains net angular momentum. For eB = 0, the value of

l0 (about 0.80, in units of a2
BΩB) is the same to within our uncertainty for both

α = 0.1 and 0.05. As eB increases, l0 first decreases, reaching a minimum (0.27

for α = 0.1 and −0.48 for α = 0.05), before increasing again. At eB = 0.8, the

values of l0 are almost the same for both values of α (1.25 for α = 0.1 and 1.20

for α = 0.05). For both values of α, the minimum value of l0 occurs at the value

of eB for which the disk is apsidally locked with the binary (see Section 6.5).

6.7.3 Net Angular Momentum Transfer Rate to the Binary: Dis-

cussion

Figure 6.19 represents the most important result of this paper. We find that

the (long-term averaged) specific angular momentum received by the binary,

l0 = 〈J̇〉/〈Ṁ〉, is positive for most binary eccentricities (including eB = 0). This

directly contradicts the previous numerical results (e.g., MacFadyen & Milosavl-

jević 2008), as well as the the assumption adopted in many papers on the disk-

driven merger of supermassive black hole binaries (e.g., Armitage & Natarajan

2002; Haiman et al. 2009; Chang et al. 2010).

As we have emphasized above, l0 is an eigenvalue of the accretion flow and

can only be determined by the global solution of the flow with a proper treat-

ment of the boundaries. In our simulations we have only considered two values

of the viscosity parameter (α = 0.1 and 0.05) and the disk aspect ratio H/r = 0.1.

Can a smaller viscosity qualitatively change our result? (For example, a binary

surrounded by a “non-accreting” disk would lose angular momentum to the

disk through gravitational torque.) We think this is unlikely. Indeed, the angu-
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lar momentum flux across the disk can be written as (see Eq. 6.28)

J̇(r, t) = Ṁl − 3πνΣl − ΣlF(r), (6.36)

where we have used the fact that the gravitational torque is proportional to the

surface density, and thus T>r
grav = ΣlF(r), with F(r) > 0. In steady state, J̇ = Ṁl0,

and the disk surface density is given by

Σ =
Ṁ(1 − l0/l)
3πν + F(r)

. (6.37)

Thus, while a reduced viscosity indeed increases the surface density, it does

not necessarily change the balance between the advective, viscous, and gravita-

tional angular momentum fluxes.

Among previous numerical studies, the work of MacFadyen & Milosavljević

(2008) was the most similar to ours. These authors considered H/r = 0.1 but a

lower disk viscosity (α = 0.01). (They also adopted a polar grid in the domain

between rin = aB and rout = 100aB.) With such a small viscosity, the “viscous

relaxation” radius (see Eq. 6.6) at t = 4000PB (the typical duration of their runs)

is only about 3aB. Moreover, their initial surface density profile is far from the

steady state even for r � rin. Thus, we suggest that their findings concerning the

reduction of mass accretion onto the binary and the dominance of the gravita-

tional torque relative to advective torque (therefore a negative l0) reflected only

the “transient” phase of their simulations. Several more recent numerical stud-

ies (e.g., D’Orazio et al. 2013; Farris et al. 2014) have explored various aspects

of circumbinary accretion, but did not examine the detailed balance of angular

momentum transfer.

Shi et al. (2012) obtained a positive value of l0 in their MHD simulations

of circumbinary disks. However, as the duration of their simulations is only
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∼ 100PB (due to the costly 3D numerical method), it is unlikely that a quasi-

steady state was reached, so their value of l0 may not properly characterize the

long-term evolution of the binary and disk. The magnitude of their calculated

l0 is not large enough to cause orbital expansion, in contrast to our results (see

Section 6.8.2).

A most striking feature of Fig. 6.19 is that l0 is, in general, a non-monotonic

function of eB. For each value of α, the minimum of l0 occurs at the binary

eccentricity (eB = 0.4 for α = 0.1 and eB = 0.2 for α = 0.05) for which the

inner disk becomes apsidally aligned with the binary (see Section 6.5, partic-

ularly Figs. 6.8-6.9). At both lower and higher binary eccentricities, the inner

disk precesses coherently, giving rise to a larger value of l0. We can only specu-

late that this remarkable inter-dependence of the long-term disk variability and

the global disk eigenvalue l0 is the result of the intricate balance between the

different contributions to J̇ and the details of the accretion dynamics.

In this paper we have only considered binaries with equal masses or mod-

est mass ratios (qB ≥ 0.2), for which we have found l0 is mostly positive (see

Table 6.1). Our simuations do not apply to binaries with more extreme mass ra-

tios, for which an annular gap is opened by the (small-mass) secondary instead

of a common cavity surrounding both components of the binary (D’Orazio et

al. 2016). For such extreme mass ratios, the binary may lose angular momen-

tum to the disk, analogous to Type II planet migration (e.g., Lin & Papaloizou

1986). Another caveat of our study is that we have neglected the self-gravity of

the disk, which may play a role in the angular momentum transfer to the binary

(e.g., Cuadra et al. 2009). This amounts to assuming that the disk mass πr2Σ (in-

side a few aB’s) is much less than the mass of the binary MB. Binary black holes
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embedded in a massive nuclear disk may suffer angular momentum loss to the

disk due to dynamical friction (e.g., Escala et al. 2005).

6.8 Summary and Discussion

6.8.1 Summary of Results

We have carried out long-term, two-dimensional simulations of viscous cir-

cumbinary disks, for a range of binary eccentricities, mass ratios, and viscosity

parameters. We have focused on the scenario in which mass is supplied to the

outer disk at a fixed rate, and examined the quasi-steady state of the disk, as

characterized by a steady flow of mass and angular momentum throughout the

disk. Our key results are:

• The structure of the inner disk is characterized by the radius rpeak = (3 −

5)aB (where aB is the binary semi-major axis), at which the azimuthally-

averaged surface density reaches a maximum, and another radius, r0.1 =

(1.6 − 2.6)aB, at which the surface density falls to 10 per cent of its value

at rpeak. While rpeak is non-monotonic in eB, r0.1 strictly increases with eB

(see Fig. 6.3), and is a good representation of the “truncation radius” of

the disk, as it agrees with the theory of inner disk truncation due to the

clearing of a gap at increasingly higher order Lindblad resonances (as a

function of eB) to within 20 per cent.

• The mass accretion onto the central binary is highly variable (see Fig. 6.5),

with the dominant period of variability either equal to the binary period
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PB or about 5PB (“low-frequency variability”). The low-frequency vari-

ability occurs for eB . 0.05 and qB & 0.2, and is associated with the

Keplerian motion of density “lumps” that are continuously formed and

destroyed near the inner edge of the disk (slightly interior to rpeak). The

accretion variability at PB occurs for eB & 0.05, in which case no lump is

formed at the inner disk (see Fig. 6.6).

• The inner region of the disk (3aB . r . 6aB) is generally eccentric. For both

low (eB . 0.2) and high (eB & 0.4) binary eccentricities, the eccentric disk

coherently precesses around the binary with a period of several hundred

binary orbits. For intermediate eccentrities (eB = 0.2 − 0.4, depending on

the disk viscosity parameter), the eccentric disk instead becomes apsidally

locked with the binary (see Figs. 6.8-6.9). The behavior of the inner eccen-

tric disk may be explained in a linear, one-dimensional framework, using

a combination of eccentricity excitation at multiple eccentric Lindblad res-

onances, the strengths of which depend on eB, and viscous eccentricity

damping (see Section 6.6).

• Although the “instantaneous” mass accretion rate across the disk is highly

variable (see Fig. 6.13), the time-averaged accretion rate (averaged over

hundreds of PB, corresponding to the precession period of the inner ec-

centric disk), is constant across the disk, and approximately equals the

mass supply rate at the outer radius of the disk (see Fig. 6.14). Although

this result contradicts several previous claims, it does agree with the re-

cent simulations using the moving mesh code AREPO (Muñoz & Lai 2016)

that resolve accretion onto individual components of the binary.

• Our most important finding concerns the time-averaged angular momen-

tum transfer rate from the disk to the binary. This angular momentum
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transfer includes contributions from mass accretion, viscous stress and

gravitational torque between the binary and the disk. We find that, in the

quasi-steady state, the specific angular momentum transferred to the bi-

nary, l0 = 〈J̇〉/〈Ṁ〉, depends on the binary eccentricity in a non-monotonic

manner (Fig. 6.19; see Table 6.1 for a list of the computed l0 values). Con-

trary to many previous claims and assumptions, we find that l0 is posi-

tive for most eB’s, implying that the binary receives net angular momen-

tum. The minimum l0 occurs at intermediate binary eccentricities (around

0.2 − 0.4, depending on the viscosity parameter), and corresponds to the

regime where the inner eccentric disk is apsidally aligned with the binary

(see Section 6.7.3 for discussion).

6.8.2 Astrophysical Implications

Binary Orbital Evolution

As noted before (Section 6.1 and Section 6.7.3), binary-disk interaction has long

been suggested to play an important role in driving the orbital decay of super-

massive black hole (SMBH) binaries. The rate of change of the binary angular

momentum is related to the rate of change of its orbital elements, ȧB and ėB, as

well as the mass accretion rate of the individual stars, Ṁ1 and Ṁ2, according to

J̇B

JB
=

Ṁ1

M1
+

Ṁ2

M2
−

1
2

ṀB

MB
+

1
2

ȧB

aB
−

(
eB

1 − e2
B

)
ėB. (6.38)

We cannot track the mass accretion rates of the individual stars in the simula-

tions presented in this paper, but for an equal mass binary, we may assume that

on average, Ṁ1 = Ṁ2 = ṀB/2, due to symmetry (this is true on average, but the

210



-10

-5

0

5

10

15

0.0 0.2 0.4 0.6 0.8

(ȧ
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Figure 6.20: The rate at which the binary semi-major axis changes, ȧB/aB

(Eq. 6.39), normalized by the rate at which its mass grows, ṀB/MB, as inferred
from the values of l0 shown in Fig. 6.19. We have assumed that the members of
the equal mass binary take on equal shares of the accreted mass, and that the
binary eccentricity does not change. Under these assumptions, the semi-major
axis of the binary grows with time for a wide range of eB.
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symmetry can be temporarily broken in an alternating fashion due to preces-

sion, e.g., Dunhill et al. 2015; Muñoz & Lai 2016). Solving the full evolution of

the binary orbit also requires knowledge of the rate at which it gains or loses

energy, the determination of which is beyond the scope of this work. If instead

we simply assume that ėB = 0, the orbital evolution is described by

ȧB

aB
= 8

(
l0

lB
−

3
8

)
ṀB

MB
, (6.39)

where lB = [GMtotaB(1 − e2
B)]1/2 is the specific angular momentum of the binary.

Under this assumption, the sign of ȧB/aB is determined by whether l0 is larger or

smaller than 3lB/8. Figure 6.20 shows the orbital evolution rate for equal-mass

binaries, using the values of l0 determined in our numerical simulations (see

Table 6.1 and Fig. 6.19). Typically, ȧB is positive, meaning that the binary semi-

major axis grows with time. We find two cases for which the binary shrinks,

both corresponding to the minimum of l0(eB), which is also associated with apsi-

dal alignment of the eccentric disk and binary. We reiterate that Eq. 6.39 applies

only when ėB = 0. Eccentricity damping (ėB < 0) would reduce ȧB.

This result is contrary to the common assumption that interactions with a

surrounding disk lead to binary shrinkage (e.g., Begelman et al. 1980; Armitage

& Natarajan 2002; MacFadyen & Milosavljević 2008). Therefore, at least for bi-

nary black holes with comparable masses, circumbinary disks may not provide

a solution to the “final parsec problem” for SMBH binaries. As a caveat, we

reiterate that the simulations in this paper were restricted to binaries with equal

masses or modest mass ratios, and we have also assumed that the inner disk

(within ∼ 10aB) has a negligible mass compared to the binary (see Section 6.7.3).

More systematic studies of binaries with more extreme mass ratios and massive

disks are warranted.
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Circumbinary Planet Formation

Circumbinary protoplanetary disks, a number of which have been observed

(e.g., Dutrey et al. 1994; Mathieu et al. 1997; Simon et al. 2000), are the birth-

places of circumbinary planets, such as those discovered by the Kepler mission

(e.g., Doyle et al. 2011; Welsh et al. 2012; Orosz et al. 2012). Many of these

planets have semi-major axes a few times larger than that of the binary, and are

therefore close to the dynamical stability limit (Holman & Wiegert 1999). This

radius is also close to the inner truncation radius of the disk, which may play

a role in halting planetary migration (e.g., Nelson 2003; Pierens & Nelson 2007;

Kley & Haghighipour 2014, 2015).

The disk truncation radius increases with binary eccentricity (see Fig. 6.3).

The gradients of the surface density profile in the inner disk are also sensitive to

the binary eccentricity, becoming steepest when it takes on intermediate values.

These steep density profiles may affect planet migration in these regions.

The growth of planetesimals may be inefficient close to the binary as a

result of its gravitational perturbations (e.g., Moriwaki & Nakagawa 2004;

Paardekooper et al. 2012; Meschiari 2012; Rafikov 2013; Silsbee & Rafikov 2015).

The eccentricity of planetesimals embedded in the disk is damped due to gas

drag, but it cannot reach zero, since the finite eccentricity of the disk itself serves

as a lower limit. The average relative velocity between planetesimals is approx-

imately vrel ≈ evK, where vK is the Keplerian orbital velocity. At a separation

of (3 − 4)aB from the binary, near the dynamical stability limit where many of

the Kepler circumbinary planets reside, we find that the disk has an eccentric-

ity of 0.05 − 0.2, which for a binary separation of 0.2AU, corresponds to relative

planetesimal velocities of several km/s. As this is much larger than their escape
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velocities (e.g., a few m/s for 10km bodies), collisional growth of planetesimals

is likely to be strongly inhibited in this region. However, we find that for inter-

mediate binary eccentricities, the eccentric disk becomes apsidally aligned with

the binary. If, in these cases, planetesimal orbits closely follow those of fluid

elements in the disk (due to the effects of gas drag), then the planetesimals may

be apsidally aligned with one another. As a result, they may have much smaller

relative velocities, allowing collisional growth to occur. A full treatment of both

the gas and planetesimal dynamics is required to assess the plausibility of this

outcome.

6.8.3 Limitations and Prospects

Throughout this work, we have studied the accretion flow around binaries

while discarding the region of the computational domain where individual cir-

cumsingle disks would form around each component of the binary. This sim-

plification makes the problem tractable in cylindrical-coordinate grids. In ad-

dition, ignoring the inner region makes the long-term integrations presented

here feasible, as it directly imposes a lower limit on the shortest computational

time-step. However, as a consequence, the details of accretion onto the individ-

ual members of the binary – such as mass and momentum transfer – are lost.

Simulating this co-orbital region is key to understanding the mass-growth and

orbital evolution of the central binary, but it represents a significant computa-

tional challenge. Long-term simulation of individual accretion in binaries while

retaining the features of FARGO-like finite-volume codes such as PLUTO has only

been accomplished recently (Farris 2014, Muñoz & Lai 2016). These simulations

are now possible thanks to the implementation of novel meshing algorithms
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in the ground-breaking codes DISCO (Duffell & MacFadyen 2013, Duffell 2016)

and AREPO (Springel 2010, Muñoz et al. 2014). In future work (Muñoz, Mi-

randa & Lai, in prep), we will complement the results of our PLUTO simulations

with AREPO simulations. As AREPO and PLUTO are both finite-volume schemes

(albeit with different-order reconstruction), the cell-centred primitive variables

of a PLUTO snapshot can be directly mapped onto an AREPO unstructured grid

simulation and then evolved onwards. With virtually identical initial condi-

tions, the mass and angular momentum exchange between the disk and the

binary can be contrasted for these two numerical approaches, thus providing a

test and validation for the conclusions presented in this work.

In particular, it is of interest to test the robustness of l0. Provided that the

simulation is in a quasi-steady state, the value of l0 is largely determined by the

surface density profile, Σ [Eq. (6.37), with both F(r) and ν(r) being the same for

different numerical methods, within the errors of the hydrodynamical solver].

Since the diode boundary condition at r = rin in our PLUTO simulations cannot

capture the “sloshing” nature of the gas dynamics around eccentric binaries

at that location, it is possible that even though Ṁ(r) = constant in both sets of

simulations, a slightly different value of Σ at r ≈ rin might change the value of l0.

However, the qualitative agreement in Ṁ(t) between the two sets of simulations

(see Figs. 2 and 5 of Muñoz & Lai 2016) for different eccentricities and locations

within the disk (except at r = rin) is encouraging. The fact that the value of

l0 calculated in our PLUTO simulations is independent of rin (see Fig. 6.17) also

suggests the robustness of our l0 values.
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CHAPTER 7

TRAPPING OF LOW-MASS PLANETS NEAR THE INNER EDGES OF

PROTOPLANETARY DISKS

7.1 Introduction

Tidal interactions of planets with their natal disks lead to angular momentum

exchange and orbital migration (Goldreich & Tremaine 1979, 1980; Lin & Pa-

paloizou 1979; Ward 1986, 1997). The direction of the orbital migration is usually

inwards, although this depends on the structure, thermodynamics, and radia-

tive and turbulent properties of the disk (see Kley & Nelson 2012; Baruteau et

al. 2014). For low-mass planets, with insufficient mass to modify the surface

density profile of the disk, the resulting “Type I” migration is rapid, and pro-

ceeds until the planet reaches the inner edge of the disk or the magnetospheric

cavity.

In Type I migration theory, the disk responds strongly to the gravitational

potential of the planet at Lindblad resonances (LRs), which are locations at

which the natural radial epicyclic frequency of the disk is commensurate with

the pattern frequency of the planet. Waves excited at either outer Lindblad res-

onances (OLRs), which carry positive angular momentum, or at inner Lindblad

resonances (ILRs), which carry negative angular momentum, propagate away

from the planet until they are damped either viscously (e.g., Takeuchi et al. 1996)

or nonlinearly (e.g., Goodman & Rafikov 2001). Migration is a result of the dif-

This chapter is adapted from Miranda & Lai (in prep).
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ferential Lindblad torque, i.e., the asymmetry between the negative torque ap-

plied to the planet by OLRs and the positive torque by ILRs. In standard theory,

the disk is considered to be infinite in extent, so that waves travel exclusively

away from the planet and damp far from it. In numerical studies of planet-disk

interaction (e.g., de Val-Borro et al. 2006), this is achieved by imposing wave

damping zones at the edges of the computational domain, so that all waves are

outgoing, and wave reflection from the edges of the domain is prohibited.

Tsang (2011; hereafter T11) demonstrated that, if the inner edge of the disk

is partially reflective, waves launched by the planet at ILRs may be resonant

with the inner edge of the disk, enhancing their positive torque on the planet.

If the resonant gain of these torques is sufficiently large, then the sum of ILR

torques may be equal in magnitude to the OLR torques, resulting in a vanishing

differential Lindblad torque. This leads to the existence of migration traps in

the disk, at which the migration of the planet is halted, with a semi-major axis

several times larger than the radius of the inner edge of the disk. This mecha-

nism may be somewhat modified by the corotation torque, which arises due to

interaction of gas in the co-orbital region of the planet (provided that it is not

saturated, see Kley & Nelson 2012).

Protoplanetary disks may either extend to the stellar surface, or be truncated

by the stellar magnetic field. In the latter case, accretion onto the central star is

complex and three-dimensional inside of the truncation radius, involving the

funneling of disk material along the stellar magnetic field lines. In either case,

the inner edge of the disk (i.e., disk-star or disk-magnetosphere interface) may

present a semi-rigid “wall” to incoming waves (e.g., Fu & Lai 2012), allowing

them to be reflected, and making the migration halting mechanism described
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by T11 possible.

In this paper, we numerically investigate the migration of a low-mass planet

(. 10M⊕) near the inner edge of a disk, using two-dimensional, viscous hy-

drodynamics simulations. We assume that the disk is truncated at the stellar

corotation radius, in a configuration such that no angular momentum is trans-

fered to the star. We show that Type I migration is halted at several times the

radius of the inner edge of the disk.

7.2 Problem Setup

We consider a planet with mass Mp and semi-major axis ap embedded in a

gaseous disk orbiting a star of mass M∗. The planet-to-star mass ratio is is

q = Mp/M∗. The disk is described in (cylindrical) polar coordinates (r, φ) by

the surface density Σ and velocity (ur, uφ). The disk is geometrically thin, and

rotates at approximately the local Keplerian rate ΩK = (GM∗/r3)1/2. Its radial

extent is rin to rout = 7rin, and the orbital period at rin, Pin = 2π/ΩK(rin), is taken

as the reference unit of time. The equation of state is locally isothermal, with

p = Σc2
s (r), where p is the height-integrated pressure, and

cs(r) = hrΩK (7.1)

is the sound speed. The disk aspect ratio, h = H/r, is chosen to have the constant

value h = 0.05, unless otherwise specified. The kinematic viscosity is described

by the α prescription,

ν = αcsH, (7.2)

and we choose several different values of α throughout this study.
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7.2.1 Disk Structure

The disk is initialized in an equilibrium state, which is not strongly modified

by the presence of the (low-mass) planet (i.e., the disk and planet are in the

Type I migration regime). We adopt a state with a constant mass accretion rate,

Ṁ = −2πrΣur. The disk structure is determined by conservation of angular mo-

mentum, which takes the form

Ṁl + 2πr3νΣ
dΩ

dr
= Ṁl0, (7.3)

where the first term on the left-hand side represents inward advection of angu-

lar momentum, and the second term represents outward transport of angular

momentum due to viscous stress. The quantity l0 on the right-hand side is an

eigenvalue, whose value is equal to the (constant) ratio of the angular momen-

tum accretion rate and mass accretion rate through the disk (and onto the central

star), J̇/Ṁ (e.g., Popham & Narayan 1991). The profiles of surface density and

radial velocity satisfying this equation are

Σ(r) =
Ṁ

3πν

(
1 −

l0

l

)
, (7.4)

ur(r) = −
3
2
ν

r

(
1 −

l0

l

)−1

. (7.5)

Additionally, the angular velocity is approximately Keplerian, but modified by

the pressure gradient,

uφ(r) =

(
v2

K +
r
Σ

dp
dr

)1/2

, (7.6)

where vK = rΩK is the Keplerian orbital velocity.
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Inner Boundary

The value of the eigenvalue l0 is determined by the details of the inner edge of

the disk, which are specified by the numerical inner boundary conditions. For

non-magnetic stars, the disk stops at the stellar surface, rin = R∗. More likely, for

magnetic stars, the disk is truncated at the magnetosphere radius, at which the

stress due to the (dipolar) stellar magnetic field dominates over the accretion

stress,

rm = k
(

B4
∗R

12
∗

GM∗Ṁ2

)1/7

, (7.7)

where B∗ is the stellar surface magnetic field strength and k ≈ 1 is a constant.

In both cases, to avoid complications associated with boundary layers, we as-

sume that the flow inside inside rin rotates at ΩK(rin), i.e., rin coincides with the

corotation radius of the star,

rco =

(
GM∗
Ω2
∗

)1/3

. (7.8)

The plausibility of such a configuration is supported by analytic and numerical

studies of the interactions of disks with magnetic stars (Ghosh & Lamb 1979;

Koenigl 1991; Ostriker & Shu 1995; Long et al. 2005). In this state, there is no an-

gular momentum transfered to the star, which fixes the value of the eigenvalue,

l0 = 0. Equations 7.4 and 7.5 then become

Σ(r) = Σ0

(
r

rin

)−1/2

, (7.9)

where Σ0 = Ṁ/[3πν(rin)], and

ur(r) = −
3
2
αh2vK. (7.10)

In general, fluid perturbations around rin are complicated, and depend on the

dynamics of the flow inside rin (see Tsang & Lai 2009; Fu & Lai 2012). For sim-

plicity, we assume that at rin, the orbital velocity is fixed at its Keplerian value,
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while the surface density and radial velocity are fixed are at their equilibrium

values (i.e., equations 7.9 and 7.10 evaluated at rin):

(
Σ, ur, uφ

)
rin

=

Σ0,

(
−

3ν
2r

)
rin

, vK(rin)
 . (7.11)

Disk Mass and Planet Migration

The choice of the value of Σ0 determines the migration rate of the planet. The

total (Lindblad + corotation) torque on the planet can be written as Γtot = CΓ0,

where

Γ0 =

(
Mp

M∗

)2 (
H
ap

)−2

Σpa4
pΩ

2
p (7.12)

is the characteristic Type I migration torque [here Σp = Σ(ap)], and the order

unity coefficient C depends on the structure of the disk. For an infinite, two

dimensional disk with Σ ∝ r−1/2 and cs ∝ r−1/2, C = 1.47 (D’Angelo & Lubow

2010). The orbital evolution of the planet is determined by setting Γtot = L̇p,

where Lp is the angular momentum of the planet. Thus the semi-major axis

decays exponentially (this will be modified due to the partially reflective inner

boundary), with a timescale given by

tmig =
h2

4πCq

(
Σ0r2

in

M∗

)−1

Pin

= 1.35 × 104
( q
10−5

)−1
(

h
0.05

)2 (
Σ0r2

in

10−3M∗

)−1

Pin.

(7.13)

We choose Σ0 = 10−3M∗/r2
in for the surface density scaling factor, and have

scaled equation 7.13 accordingly. Note that this value of Σ0 is about 50 times

larger than the one corresponding to a minimum-mass solar nebula profile

(Hayashi 1981), 6.0 × 10−5M∗/r2
in (taking rin = 0.1 AU), which would lead to a

longer migration timescale (2.26 × 105Pin) for our computation. However, it is
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only about two times larger than the value corresponding to the “minimum-

mass extrasolar nebula” of Chiang & Laughlin (2013).

For most of our simulations, the initial semi-major axis of the planet is a0 =

ap(t = 0) = 3rin. Based on the results of T11, this is an approximate upper limit

for the semi-major axis at which migration may be halted. However, we find

that the migration halting mechanism is somewhat more robust than indicated

by the analytical results, and we find several cases for which the planet migrates

negligibly when initialized at 3rin. In these cases, the simulation is repeated with

a larger a0, to check whether or not there is a larger semi-major axis at which the

migration of the planet can be halted. Indeed, for our standard disk thickness,

halting slightly beyond 3rin is possible in some cases, while for thicker disks,

halting significantly beyond 3rin is sometimes possible, requiring a much larger

a0.

7.2.2 Wave Damping Zones

Near the outer disk boundary (r/rin = 6.4 − 7.0), we apply the wave damp-

ing conditions (e.g., de Val-Borro et al. 2006), in which the fluid variables are

damped to their initial conditions on the local orbital timescale. This prevents

wave reflection at the outer boundary, so that only outgoing waves may prop-

agate (physically, this represents the existence of an extended disk beyond the

outer boundary). At the inner boundary, we do not apply the damping condi-

tions, as we are explicitly interested in reflection of waves by the inner edge.

However, for comparison, we have also performed several runs in which wave

damping near the inner boundary (r/rin = 1.0 − 1.3) is included, to mimic the
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standard numerical planet-disk interaction setup, in which the disk extends to

much smaller radii.

7.2.3 Numerical Method

The two-dimensional viscous hydrodynamic equations of the disk and the dy-

namics of the planet are solved using the code FARGO3D (Benı́tez-Llambay &

Masset 2016). The gravitational potential of the planet is softened over a length

of ε = 0.6H. The shift of resonances due to the fact that the planet feels the

gravity of the disk, while the disk does not, is corrected using the method de-

scribed in Baruteau & Masset (2008). Unless otherwise stated, the dimensions

of the numerical grid are Nr × Nφ = 477 × 1536 (see Section 7.3.5 for a resolution

study), with logarithmic spacing in r and uniform spacing in φ, so that the grid

cells are approximately square (∆r ≈ r∆φ) everywhere. The planet is smoothly

introduced to the disk by ramping its mass up from zero over the first 50Pin

(approximately 10 orbits of the planet at its initial ap = 3rin).

7.3 Results

7.3.1 Migration and Trapping

The migration (semi-major axis as a function of time) of the planet for several

different mass ratios in disks with different values of the viscous α parameter

is shown in Figure 7.1. The planet initially migrates inwards at a rate approx-

imately equal to the migration rate in an infinite disk (equation 7.13), on aver-
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Figure 7.1: The semi-major axis of the planet as function of time for q = Mp/M∗ =

3 × 10−6 (top panel) and q = 10−5 (bottom panel), with different values of the
viscosity parameter, α (solid lines). The dotted lines correspond to the migration
of the planet in an infinite disk. Note that the scale of the x-axis differs between
the two panels, and that in the top panel, for the case with α = 10−3, the planet
is initialized with a slightly larger semi-major axis than in the other cases.
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The planet moves from right to left in these plots. The torque has been time-
averaged over intervals of 5Pin in order to filter out short-timescale variations.
The red line represents the torque on a planet undergoing normal Type I migra-
tion. The location in the disk at which the planet ultimately stops migrating is
coincident with a zero-crossing of Γtot.
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Figure 7.3: Total torque on the planet (solid line, left axis) and semi-major axis
(dashed line, right axis) as a function of time for the case with q = 10−5 and
α = 10−3.

age. However, the instantaneous migration rate varies relative to the average on

timescales of hundreds to thousands times Pin. Eventually, the planet encoun-

ters a “trap” and stops migrating, with the semi-major axis remaining constant

for the remainder of the simulation (at least several thousand Pin for all cases).

The total torque on the planet as a function of semi-major axis is shown in

Figure 7.2, for the cases with q = 10−5 and several values of α (cf. Figure 3 of T11).

The standard Type I migration torque is also shown for comparison. The torque

is an oscillatory function of ap; averaged over a range of ap, the torque is equal

to the the standard torque, but it can also be significantly larger or smaller (in

magnitude) at different locations in the disk. In particular, as described in T11,

the torque has zero-crossings, corresponding to locations at which migration is

halted. See Figure 7.3 for the torque as a function of time, which decays towards

zero as the planet settles into the trap. The calculations presented in T11 suggest

that the spatial variations in torque and presence of zero-crossings are largely
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suppressed for α = 10−3 (for h = 0.05, as in our simulations). However, we find

that these features are present for values of α as large as 0.04.

In some cases, there are other zero crossings which the planet migrates

through without stopping. These correspond to intervals of time, for example

t ≈ (1500 − 2500)Pin for the case with q = 10−5 and α = 10−3, for which migration

is dramatically slowed down, but not completely stopped. At these points, the

planet spends an extended amount of time with a nearly constant semi-major

axis, but eventually breaks out of the “temporary” migration trap and contin-

ues to migrate inwards, until ultimately encountering a “permanent” trap. This

behavior can be attributed to short-term variations in the torque on the orbital

period and grid cell crossing time of the planet (the latter is a numerical effect,

see Section 7.3.5). If the amplitude of the torque associated with these variations

is larger than the slowly-varying torque associated with a migration trap, then

the planet can in principle escape from a trap.

The final semi-major axis of the planet, ap,final, is shown in Figure 7.4 (top

panel), for planets with q = 3 × 10−6, 10−5, and 3 × 10−5 (i.e., M⊕, 3M⊕, and 10M⊕,

if M∗ = 1M�), with a viscous α in the range 4 × 10−4 − 4 × 10−2 (note that several

of these cases are not shown in Figure 7.1). Generally, ap,final decreases as either

q or α increases. For each q, there is a maximum ap,final, whose value decreases

with q, which is achieved when α is sufficiently small (. 10−3). As α is increased

from 10−3 to 10−2, ap,final decreases. For α & 10−2, ap,final is approximately constant,

at a value of about 1.59rin. Although this is very close to the location of the

2:1 orbital commensurability with the inner edge of the disk, it has no physical

significance and is merely a numerical coincidence, since we find that ap,final can

be shifted away from this value with small changes in the value of h.
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Figure 7.5: Snapshots of the disk surface density, relative to the azimuthally-
averaged surface density, for a planet with q = 10−5. In the leftmost panel,
the planet is undergoing normal Type I migration (i.e., an inner wave damping
zone is included). In the other panels, the planet is self-consistently trapped at
its final semi-major axis, for different values of α.

Also shown in Figure 7.4 (bottom panel) is ap,final as a function of α for two

different planet masses, for the case with a larger disk aspect ratio, h = 0.1.

The results are qualitatively similar to the case with h = 0.05; ap,final decreases

with α before reaching a nearly constant minimum value for α & 10−2 (there is

a slight increase in ap,final when α is further increased from this value, although

its magnitude is small relative to the total range of ap,final). However, ap,final is

systematically larger compared to the case with smaller h, and is never smaller

than 2.2rin. For α . 10−3, ap,final can be as large as 5.4rin (note that for theses

cases, the planet was initialized with a semi-major axis of 5.5rin, and the outer

boundary of the numerical grid was extended to 12rin).

7.3.2 Wave Reflection

Figure 7.5 shows snapshots of the disk surface density (relative to the local

azimuthally-averaged surface density), when the planet is at its final semi-major

axis, for the case with q = 10−5 and several different values of α. Also shown for
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comparison is the case of a freely migrating planet, with an inner wave damp-

ing zone included so that wave reflection at the inner boundary is prohibited.

For the cases in which the planet is trapped, there are visible standing waves be-

tween the inner edge and the orbit of the planet. For α = 10−3, the dominant az-

imuthal number of the reflected waves, m ≈ 8, can be discerned visually. These

reflected waves do not propagate outward beyond the location of the planet.

For the larger viscosity parameters, α = 4 × 10−3 and 10−2, in which the planet

is trapped closer to the inner edge, the reflected waves have a larger amplitude,

and can propagate beyond the orbit of the planet.

7.3.3 Enhancement of Inner Lindblad Torques

We decompose the torque on the planet into components which have different

azimuthal numbers and which originate from different parts of the disk, accord-

ing to

Γm = π

∫
rΣm(r)

(
∂Φ

∂φ

)
m

(r)dr, (7.14)

where Σm and (∂Φ/∂φ)m are the m-components (i.e., parts proportional to eimφ)

of the surface density and (softened) tidal potential. The integral is taken over

either [rin, ap − rH] for torques due to ILRs, [ap − rH, ap + rH] for corotation reso-

nances (CRs), or [ap + rH, rout] for OLRs. Here rH = (q/3)1/3ap is the Hill radius of

the planet. Note that these are convenient operational definitions, rather than

exact definitions, for the torques due to the different types of resonances. The

decomposition is shown in Figure 7.6, for the cases with q = 10−5 and two differ-

ent values of α. Both the case of a (self-consistently) trapped planet, and a planet

fixed at the same location, with an inner wave damping zone included (so that

wave reflection is prohibited), are shown. The torques due to OLRs and CRs are
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tions from corotation resonances (“CRs”) and inner/outer Lindblad resonances
(“ILRs/OLRs”), which are operationally defined as originating from within the
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and m = 5 − 6 for α = 10−2.

231



1.0

1.5

2.0

2.5

3.0

3.5

0 2 4 6 8 10

1.5
2.0

3.0

4.0

5.0

6.0

a
p
/r

in

P
/P

in

t [103Pin]

Fixed B.C.
Reflective B.C.

q = 10−5

α = 10−3

α = 4× 10−3

Figure 7.7: The semi-major axis as a function of time for q = 10−5, and with
different values of α, using two different boundary conditions: the standard
“fixed” boundary condition, and the reflective boundary condition (see Section
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dition.

mostly unaffected by reflection, while the ILRs are enhanced for a range of m

values. For α = 10−3, the enhanced ILRs have m = 5 − 12, and for α = 10−2, they

have m = 5 − 6. Torque components with small values of m are preferentially

enhanced when α is large, since the ILRs with large values of m are located too

far from the inner edge for waves launched there to be reflected before they are

damped.

7.3.4 Alternative Inner Boundary Condition

The inner boundary conditions we have applied, in which all fluid variables

are held at fixed values, represent a simple model of the disk-magnetosphere

boundary, which we do not attempt to model in any explicit detail. To assess
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the robustness of the planet trapping phenomenon found above, we have in-

vestigated an alternative boundary condition, namely a “reflective” boundary

condition, in which Σ and uφ are symmetrized across the boundary and ur is

antisymmetrized, so that (
∂Σ

∂r
, ur,

∂uφ
∂r

,

)
rin

= (0, 0, 0). (7.15)

The results of this numerical experiment, for the cases with q = 10−5 and two dif-

ferent values of α, are shown in Figure 7.7. The details of the migration history

of the planet are similar, but not identical to the case with the fixed boundary

conditions, and ultimately, the migration halts at a nearly the same location. For

α = 10−3, migration halts at 2.78rin, which is the location of a “temporary trap”

at which the planet temporarily stalls in our fixed boundary condition simula-

tion. This represents a 5% difference in the final semi-major axis between the

two different boundary conditions. For α = 4 × 10−3, the planet stops at 2.13rin

regardless of the inner boundary condition. We conclude that our results are

not sensitive to the details of the inner boundary condition.

7.3.5 Numerical Resolution

There is a resolution-dependent numerical effect which may influence the mi-

gration and trapping of the planet. The torque on the planet varies as it migrates

through the numerical grid, with a period equal to the radial grid cell crossing

time, |∆r/ȧp|, where ∆r is the grid spacing (Masset & Papaloizou 2003), and with

an amplitude which decreases as the resolution increases. To test how numer-

ical resolution affects the final semi-major axis of the planet, we have carried

out a resolution study for the case with q = 10−5 and α = 10−3. Our standard
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numerical resolution is Nr × Nφ = 477 × 1536, so we also ran this case using a

lower resolution (318 × 1024) and using a higher resolution (636 × 2048). The

final semi-major axis ap,final decreases by 3% (compared to the standard resolu-

tion) for the low-resolution run, and increases by 0.5% for the high-resolution

run. The numerical results are therefore converged with respect to resolution.

7.4 Discussion

7.4.1 Dependence on Viscosity

The planet is trapped closer to the inner edge of the disk as the viscosity param-

eter α is increased (see Figure 7.4). This is in qualitative agreement with the re-

sults of T11, in which viscous damping reduces the maximum possible enhance-

ment of ILR torques responsible for stopping the migration of the planet. How-

ever, the final semi-major axis is relatively insensitive to α for 0.01 . α . 0.04.

T11 estimates the critical viscosity parameter, αcrit, above which Type I mi-

gration can no longer be halted by trapped modes, by considering the effect

of viscosity on the resonant gain associated with an individual m-mode, and

finds that αcrit ∼ h5/2 ∼ 6 × 10−4. Numerically, we find that trapping is possible

even for the largest value of α used in our experiments (0.04). We attribute this

discrepancy to the fact that modes with multiple values of m can be simultane-

ously resonant when the planet is trapped (see Figure 7.6), and so α can be much

larger than the case of a single mode. This is because, if the ILR torque of a sin-

gle m-mode were to balance out all of the OLR torques, then it would have to be

enhanced by a factof of ∼ h−1 (approximately the total number of modes contri-
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butiong to the total torque), and so a small amount of viscous damping would

make this impossible. However, if the ILR torques associated with many val-

ues of m collectively cancel out the OLRs, then they must each only be slightly

enhanced, and so the cancellation does not depend as sensitively on α

The lowest α we have considered is 4×10−4. For disks with lower viscosities,

i.e., “nearly laminar” disks, Type I migration is modified due to the opening

of a partial gap and density feedback effects, which may slow down or stop

migration (Hourigan & Ward 1984; Ward & Hourigan 1989; Ward 1997; Rafikov

2002; Li et al. 2009; Fung & Chiang 2017).

7.4.2 Dependence on Planet Mass

The semi-major axis at which the planet is trapped decreases as the mass of

the planet increases. As suggested by T11, the trapping mechanism is modified

when the planet is massive enough for nonlinear damping (due to shocks) to

play a role. In particular, when q & (2/3)h3 ∼ 8 × 10−5, nonlinear effects are

dominant, since waves excited by the planet shock immediately (Goodman &

Rafikov 2001). This may set an approximate upper limit for the mass ratios of

planets which may be trapped. Indeed, in one of our numerical experiments

(not shown), a planet with q = 10−4 proceeds to migrate nearly all the way to the

inner edge of the disk (the details of this simulation become unreliable at late

times, as the distance between the planet and inner edge becomes small and

is not resolved by a sufficient number of grid cells). In addition, a sufficiently

massive planet may open a gap in the disk, which greatly slows its migration
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(Type II migration). This occurs when (Crida et al. 2006)

1.08hq−1/3 + 50αh2q−1 . 1, (7.16)

i.e., when q & (10−4 − 10−3), depending on the value of α. Therefore, there may

only exist a narrow range of planet masses which result in rapid (Type I) migra-

tion which proceeds all the way to the inner edge of the disk.

7.4.3 Dependence on Disk Thickness

Throughout most of this paper, we adopted a disk thickness of h = H/r = 0.05,

and found that planets can be trapped at about (1.6 − 3.3)rin. Additional nu-

merical experiments presented in Figure 7.4 show that for a thicker disk with

h = 0.1, the final semi-major axis of the planet is at least 2.2rin, and can be as

large as 5.4rin for low-viscosity disks. This is significantly larger than the maxi-

mum possible trapping radius of about 3rin predicted by T11. Nonetheless, for

thicker disks, trapping is effective farther from the inner edge, in agreement

with T11. This can be understood using the fact that the resonance condition

which determines the locations of possible planet traps requires that a small in-

teger number of wavelengths fit between an ILR an the inner edge of the disk,

and that the wavelength of density waves increases with h. Therefore, this con-

dition can be satisfied at locations farther from rin for thicker disks. Since we

find that the planet is trapped before reaching the inner edge for a plausible

range of disk thicknesses, h = 0.05 − 0.1, this is unlikely to be a restricting factor

for halting migration.
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7.4.4 Caveats

Numerical Limitations

The simulations presented in this paper are two-dimensional and employ a lo-

cally isothermal sound speed profile and parameterized viscosity. We do not

include the effects of magnetic fields, turbulence, and self-gravity, all of which

may modify planet migration (see Kley & Nelson 2012; Baruteau et al. 2014).

Furthermore, we have implemented a simple boundary condition which is

meant to mimic the disk-magnetosphere boundary, which in reality is a com-

plicated, three-dimensional structure. Our simulations can therefore not be

compared to state-of-the-art simulations of planet migration (including three-

dimensional effects, magnetic fields, radiative transfer, etc.) or star-disk interac-

tions (see Romanova & Owocki 2015). Rather, they serve only to highlight the

significant effect of a partially reflective inner disk edge on the migration of a

planet, which has until now been neglected in numerical studies. It remains to

be seen whether or not this effect persists in more realistic simulations which

include a more complete treatment of the relevant physics.

Turbulence

The effective viscosity which we have parameterized using the Shakura-

Sunyaev α parameter may be a consequence of turbulence, for example, due

to the nonlinear evolution of the magnetorotational instability (MRI; see Balbus

& Hawley 1998). Turbulence can significantly alter, and in some cases inhibit

Type I migration (e.g., Nelson & Papaloizou 2004). Therefore, it could in princi-

ple disrupt the trapping mechanism explored in this paper.

237



Density fluctuations associated with ideal MRI turbulence lead to stochastic

torques with an rms amplitude

Γturb ∼ α
1/2Mp

Σa2
p

M∗
a2

pΩ
2
p (7.17)

(e.g., Johnson et al. 2006; Okuzumi & Ormel 2013). A planet in a migration

trap is stably maintained in the trap by a positive torque that it experiences if

it moves inward, whose magnitude is ∼ Γ0 (equation 7.12; see Figures 7.2–7.3).

The planet can therefore stay in the trap provided that Γturb/Γ0 . 1, i.e., if

α1/2
(H

r

)2

. q. (7.18)

This is also the approximate criterion which determines if the planet can un-

dergo smooth Type I migration rather than diffusive turbulent migration. For

the parameter values we have considered, α . 10−5 is required for the planet

to stay in a trap. This places the greatest restriction on the disk properties nec-

essary for the trapping mechanism to be realized in real disks. However, if the

anomalous viscosity described by the parameter α is not a result of turbulence,

but rather a different physical mechanism, e.g., disk winds resulting from non-

ideal magnetohydrodynamical effects (see Turner et al. 2014), then this issue

may be circumvented.

7.4.5 Observational Implications

Migration is likely play an important role in the assembly of systems with mul-

tiple coplanar, transiting planets, including Kepler 11 (Lissaeur et al. 2011) and

TRAPPIST-1 (Gillon et al. 2017). The effect of magnetospheric truncation in halt-

ing the migration of planets has been invoked to explain the architecture of such
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systems (Mulders et al. 2015; Liu et al. 2017; Lee & Chiang 2017). However, plan-

ets are typically assumed to migrate all the way to the inner edge of the disk,

or very close to it. Our results indicate that migration may instead be halted

at several times the radius of the inner edge, which may have implications for

the architecture of these planetary systems. In particular, it may be difficult to

explain how planets with orbits close to the stellar corotation radius acquired

these orbits, without invoking additional physical mechanisms to bring them

inwards.

7.5 Conclusion

We have carried out two-dimensional hydrodynamical simulations of a low-

mass planet (q = 3×10−6−3×10−5, or Mp = M⊕−10M⊕ for a 1M∗ star) undergoing

Type I migration in a disk with a partially reflective inner edge, which we take

to represent the disk-magnetosphere boundary. In agreement with the theory of

Tsang 2011 (T11), we find that the migration of the planet can be halted at a semi-

major axis several times larger than the inner disk radius rin. This occurs due to

an enhancement of inner Lindblad torques as a result of a resonance of waves

trapped between the orbit of the planet and the inner edge of the disk. A range

of azimuthal mode numbers (e.g., m ≈ 5 − 12) can contribute to the trapping,

although this range becomes narrower and tends towards smaller values for

more viscous disks. The semi-major axis at which the planet is trapped can be as

large as about 3rin, and generally decreases as either the planet mass or viscosity

are increased. For large disk viscosities (0.01 . α . 0.04), the planet becomes

trapped at about (1.6−2.2)rin, depending on the disk thickness. This mechanism

may play a role in shaping the architecture of systems of short-period planets.
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APPENDIX A

WAVE EQUATION AND MODE GROWTH RATES

A.1 Wave Equation Up to First Order in Viscosity and Radial

Infall Velocity

In this appendix we summarize the procedure of deriving the equations (2.9)–

(2.11). The linearly perturbed continuity equation (2.1) and the Navier-Stokes

equation (2.2) in the polar coordinates (r, φ) read

−iω̃δΣ +
1
r
∂r (rΣδur) +

im
r

Σδuφ = −
1
r
∂r (rurδΣ) ≡ δΣ̇ (A.1)

−iω̃δur − 2Ωδuφ + δh,r = −∂r (urδur) + δ

(
1
Σ
F visc

r

)
≡ δu̇r, (A.2)

−iω̃δuφ +
κ2

2Ω
δur +

im
r
δh = −

ur

r
∂r

(
rδuφ

)
+ δ

(
1
Σ
F visc
φ

)
≡ δu̇φ, (A.3)

The equations were arranged in such a way that the coefficients on the LHS

do not depend on the viscosity, while the RHS terms, denoted by δΣ̇, δu̇r and

δu̇φ, are at least linear in the viscosity η. The first RHS term in each equation

describes the effect of the radial inflow in the stationary case, the second terms

in the last two equations are contributions due to the perturbation of the viscous

force F visc
= ∇ · σ.

In what follows we would like to express the RHS terms δu̇r, δu̇φ and δΣ̇

in terms of the velocity perturbation δur, δuφ and enthalpy δh. To simplify the

analysis we will further work in the leading order of the WKBJ approximation.

Therefore, we assume that the radial wavelength λr = 2π/kr of the perturba-

tions is much smaller than the radius r. More specifically, we assume that
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krr = O(r/H), where H is the disk semi-thickness. In thin disks, this assump-

tion is satisfied everywhere except for small regions close to the Lindblad and

corotation resonances. In the leading order in the ratio r/H, we obtain

δΣ̇ ≈ −ur
Σ

c2
s

d
dr
δh,r (A.4)

δu̇r ≈

[
−ur

d
dr

+
4
3
ν

d2

dr2

]
δur, (A.5)

δu̇φ ≈
[
−ur

d
dr

+ ν
d2

dr

]
δuφ − νqA

Ω

c2
s

d
dr
δh. (A.6)

In all three equations, the first terms are proportional to ur and describe the

effects of the radial inflow. The second terms in equation (A.5) and (A.6) are

the contributions of the perturbed visous force due to velocity field connected

to the wave. Finally, the third term of equation (A.6) results from the change of

the viscous force due to perturbation of the dynamic viscosity coefficient η.

By substituting expressions (A.5) and (A.6) into the equations (A.2) and (A.3)

and expanding the velocity perturbation δu in powers of ν,

δur = δu0
r + νδu1

r + . . . , δuφ = δu0
φ + νδu1

φ + . . . , (A.7)

we may solve perturbativelly these equations for δu in terms of the enthalpy

perturbation δh. Up to the first order in ν (and ur), we obtain

δur =
i
D

(
ω̃

d
dr
−

2mΩ

r

)
δh −

ur

D2

(
κ2 + ω̃2

) d2

dr2 δh +

ν

D2

[(
κ2 +

4
3
ω̃2

)
d3

dr3 − 2qAΩ2 D
c2

s

d
dr

]
δh + O(ν2),

δuφ =
1
D

(
κ2

2Ω

d
dr
−

mω̃
r

)
δh + iur

κ2ω̃

2ΩD2

d2

dr2 δh −

iω̃
ν

D2

[
7
3
κ2

2Ω

d3

dr3 + qAΩ
D
c2

s

d
dr

]
δh + O(ν2). (A.8)

Finally, by substituting these expressions into the perturbed continuity equation

(A.1), we recover the desired equation (2.9) with operators L̂0 and L̂1
in and L̂1

v.
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given by equations (2.5) and (2.10) and (2.11). We remind the reader that these

equations are valid only in the leading order in both (H/r)- ratio, radial drift

velocity ur and viscosity ν under the assumpion of short radial wavelength (as

compared to the radial coordinate r). Hence, in principle, it cannot be applied in

the regions of the Lindblad and corotation resonances. A proper description of

those effects would require keeping also the singular terms in equations (A.4)–

(A.8).

A.2 Growth Rates of Modes

We would like to find the global change of the eigenfrequencies of p-modes

trapped in the inner disk. In the following, we will show that it is given by

some proper radial average of the Kato (1978) local growth rate over the propa-

gation region. Introducing ψ = S −1/2δh with S = D/(rΣ), equation (2.9) takes the

form [
d2

dr2 − V(r)
]
ψ + S −1/2L̂1

(
S 1/2ψ

)
= 0, (A.9)

where

V(r) =
D
c2

s
+

2mΩ

rω̃
d
dr

ln
(
ΩΣ

D

)
+ S 1/2 d2

dr2 S −1/2 +
m2

r2 , (A.10)

and L̂1 is either L̂1
v, or L̂1

in or their sum. Assuming that the region of interest does

not contain the resonances, the potential V(r) can be approximated by just the

first term because the others are by factor of order (H/r)2 smaller. If we express

ψ and D as ψ = ψ0 + ψ1 and D = D0 + D1 (where ψ1 and D1 are of order ν, note

that D1 = −2ω̃0ω1), we obtain in the zero order equation,[
d2

dr2 −
D0

c2
s

]
ψ0 = 0, (A.11)
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and the first order equation,[
d2

dr2 −
D0

c2
s

]
ψ1 −

D1

c2
s
ψ0 + S −1/2L̂1

(
S 1/2ψ0

)
= 0. (A.12)

Multiplying by ψ∗0 and integrating between radii r1 and r2 (trapping range of the

mode), we obtain

2ω1

∫ r2

r1

ω̃0

c2
s

∣∣∣ψ2
0

∣∣∣ dr +

∫ r2

r1

ψ∗0
(
S −1/2L̂1S 1/2ψ0

)
dr

= −

∫ r2

r1

ψ∗0

[
d2

dr2 −
D0

c2
s

]
ψ1dr ≡ I.

(A.13)

The integral on the RHS can be written as (after two integrations by parts)[
ψ1

dψ∗0
dr
− ψ∗0

dψ1

dr

]r2

r1

−

∫ r2

r1

ψ1

[
d2

dr2 −
D0

c2
s

]
ψ∗0dr. (A.14)

Assuming that ω0 is real, the first integral vanishes. The second term is a factor

O(H/r) smaller than the other integrals in equation (A.13). Then, neglecting I,

we obtain

ω1 = −

∫
ψ∗0

(
S −1/2L̂1S 1/2ψ0

)
dr

2
∫ (
ω̃0/c2

s
)
|ψ0|

2dr
. (A.15)

An approximate WKBJ solution of equation (A.11), valid up to the second

order, is

ψ0 =
1
√

k

[
A− exp

(
−i

∫ r

kdr
)

+A+ exp
(
i
∫ r

kdr
)]
,

k =
√
−D/cs,

(A.16)

for which |ψ0|
2 = (|A−|2+ |A−|

2)/k. Evaluating the two integrals in equation (A.15)

for this solution, we find that

ω1 =

∫
δω(r)w(r)dr∫

w(r)dr
, w(r) =

1
cs

ω̃0
√
−D

. (A.17)

Hence, the global change of the frequency of the mode is just the averaged local

changes δωv(r) or δωin(r) of equations (2.12) and (2.13) with the weight function

w(r).
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Although expression (A.17) does not apply close to the Lindblad resonances

(LRs), we believe that the first-order LRs can be included as well, because the

surrounding regions give negligible contributions to both integrals [w(r) is in-

tegrable close to the first-order LRs]. Therefore, the integrals can be extended

to the propagation regions of the oscillations. The lower integral however di-

verges for the second-order LR (at maxima of Ω + κ/m) and more sophisticated

analysis is needed in those cases.
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APPENDIX B

EFFECT OF VISCOSITY ON LINEAR ROSSBY WAVE INSTABILITY

Viscosity plays two main roles in our simulations. It drives the evolution of

the disk surface density profile, creating RWI-unstable bumps in the DZ, as well

as maintaining the bumps as the RWI attempts to smooth them out. It also has a

direct effect on the RWI, damping the growth of the linear instability, as well as

affecting its nonlinear evolution. Here we investigate the effect of viscosity on

the linear growth rate by performing simulations of the RWI on an artificially-

imposed density bump.

We choose a power-law surface density profile modified by a Gaussian

bump, given by

Σ (r) = r−1/2
{

1 + χ exp
[
−

(r − rB)2

2σ2

]}
, (B.1)

where rB is the location of the bump, σ is its width and χ is its dimensionless

amplitude. We henceforth set rB = 5.5 and χ = 1, so that σ is the only variable

parameter of the bump. The rotation profile Ω (r) is modified to satisfy centrifu-

gal balance [Eq. (3.6)] given this profile. The resulting vortensity profiles are

shown in Fig. B.1. In general, viscosity induces a radial drift velocity given by

ur =
2Ω

r2κ2Σ

d
dr

(
r3νΣ

dΩ

dr

)
. (B.2)

We set r3νΣdΩ/dr to have a constant value in the disk to ensure ur = 0. This is

accomplished by choosing a particular ν (r) profile, given by

ν (r) = νB

(
r
rB

)−3 [
Σ (r)
Σ (rB)

]−1 [
Ω′ (r)
Ω′ (rB)

]−1

, (B.3)

where Ω′ = dΩ/dr, and νB = α
(
c2

s/ΩK

)
rB

, so that the viscosity is described by

an effective α at rB. Obviously, Eq. (B.3) is not the standard α prescription for

245



viscosity. This choice of viscosity profile ensures that in a 1D (axisymmetric)

simulation, the initial density bump does not diffuse, remaining static on vis-

cous timescales. Therefore in our full 2D simulations, we can test the role of

viscosity on the growth of the RWI on a stationary bump. As in our main sim-

ulations, the disk has rin = 1 and rout = 12. For boundary conditions, we choose

all fluid variables to be fixed at their initial values at both boundaries. Damping

zones are included interior to r = 2 and exterior to r = 10, in which all variables

are relaxed to their initial values on orbital timescales.

The growth rate γ = Im (ω) of an RWI mode (with azimuthal number m) can

be written as

γ = γ0 − γν, (B.4)

where γ0 = εΩ is the inviscid growth rate (where ε depends on the bump profile

and sound speed) and γν is the viscous damping rate. We write

γν = β
ν

σ2 , (B.5)

where β is of order unity and depends (weakly) on the bump geometry. Near

rB, we have ν ≈ αc2
s/ΩK = αH2Ω, and so

γ =

[
ε − αβ

(
σ

H

)−2
]
Ω. (B.6)

Therefore, we expect the growth of the RWI to be suppressed when α > αcrit =

εβ−1 (σ/H)2.

We simulated the linear growth of the RWI for four bump widths (see Fig.

B.1), each with α = 0, α = 0.01, and α = 0.025. For each run, we measure the

growth rate of the m = 4 mode (shown in Fig. B.2 for σ = H/2). The growth rates

as a function of α are shown in Fig. B.3. For each σ, we find a linear fit to γ(α),

which determines the value of β, and hence αcrit, which are given in Table B.1.
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Figure B.1: Vortensity profiles used for simulations of RWI on a fixed density
bump. All profiles have rB = 5.5 and χ = 1.

σ/H β αcrit

1/2 1.77 0.0606
√

3/8 1.74 0.0721
√

1/2 1.61 0.0751
1 3.71 0.0372

Table B.1: Viscous damping proportionality factor β, and critical viscosity pa-
rameter αcrit, for different bump widths [see Eq. (B.6)].

For our three narrowest bumps, β is nearly constant (approximately 1.6 − 1.8),

and αcrit ≈ 0.06 − 0.08, which is relatively large. For σ = H, the growth rate is

affected more strongly by viscosity (β is twice as large), resulting in αcrit ≈ 0.04.

Therefore, the linear RWI may be significantly affected by viscosity for bumps

with σ & H when α ∼ 10−2.
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Figure B.2: Evolution of Σ4 [see Eq. (3.14)] for σ = H/2 and several values of α,
demonstrating viscous damping of RWI growth. The dashed lines are fits to the
linear growth phase, from which the growth rates are determined.
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Figure B.3: Growth rates as as a function of α (points) for different bump widths.
The dashed lines are linear fits to the points, whose x-intercepts give an estimate
of αcrit.
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APPENDIX C

EXPANSION OF BINARY POTENTIAL AS POWER SERIES IN

ECCENTRICITY

We expand (r12/a)−(l+1) cos
(
mφ − µφ′2

)
[for a circumstellar disk, see equation

(5.10)], or (r12/a)l cos
(
mφ − µφ′2

)
[for a circumbinary disk, see equation (5.15)],

as a power series in e. Here r12 is the binary separation and φ′2 specifies the az-

imuthal position of M2 relative to M1 in the orbital plane of the binary, which,

without loss of generality, can be chosen to be the true anomaly of the binary. We

use the elliptic expansions (e.g., Murray & Dermott 1999; Brouwer & Clemence

1961) of r12/a and φ′2, in terms of e and mean anomaly M = ΩBt. For the binary

separation r12 we have

r12

a
= 1 +

1
2

e2 − 2e
∞∑

s=1

1
s2

d
de

Js (se) cos (sM)

= 1 − e cos (M) +
e2

2
[1 − cos (2M)] +

3e3

8
[cos (M) − cos (3M)]

+
e4

3
[cos (2M) − cos (4M)] + O

(
e5

)
.

(C.1)

The following expression relating the mean anomaly M and eccentric anomaly

E is useful:

E = M + 2
∞∑

s=1

1
s

Js (se) sin (sM)

= M + e sin (M) +
e2

2
sin (2M) + e3

[
3
8

sin (3M) −
1
8

sin (M)
]

+ e4
[
1
3

sin (4M) −
1
6

sin (2M)
]

+ O
(
e5

)
.

(C.2)
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The true anomaly is given by

φ′2 =

∫ M

0

(
1 − e2

) 1
2

[1 − e cos (E)]2 dM

= M + 2e sin (M) +
5e2

4
sin (2M) + e3

[
13
12

sin (3M) −
1
4

sin (M)
]

+ e4
[
103
96

sin (4M) −
11
24

sin (2M)
]

+ O
(
e5

)
.

(C.3)

Using the above expressions we can obtain the power series (in e) for

(r12/a)−(l+1) cos
(
mφ − µφ′2

)
and (r12/a)l cos

(
mφ − µφ′2

)
, and gathering cos

[
mφ − (µ + n) ΩBt

]
terms [equations (5.10) and (5.15)], we find the coefficients CCS

l,µ,n and CCB
l,µ,n.

Using computer algebra, we have computed CCS
l,µ,n and CCB

l,µ,n for |n| ≤ 8. Each

coefficient is proportional, to leading order, to e|n|, with higher order terms pro-

portional to e|n|+2, e|n|+4, and so on. We have included terms up to order e10, so

that every Cl,µ,n includes at least one higher order correction in eccentricity after

its leading order. The leading terms for |n| ≤ 4 are shown below.

CCS
l,µ,0 = 1

CCS
l,µ,±1 =

1
2

e
[
l ± 2µ + 1

]
CCS

l,µ,±2 =
1
8

e2
[
l2 + (5 ± 4µ)l + 4µ2 ± 9µ + 4

]
CCS

l,µ,±3 =
1

48
e3

[
l3 + 6(2 ± µ)l2 +

(
12µ2 ± 45µ + 38

)
l

±8µ3 + 42µ2 ± 65µ + 27
]

CCS
l,µ,±4 =

1
384

e4
[
l4 + (22 ± 8µ)l3 +

(
24µ2 ± 126µ + 155

)
l2

+
(
±32µ3 + 240µ2 ± 558µ + 390

)
l + 16µ4 ± 152µ3

+499µ2 ± 646µ + 256
]

(C.4)
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CCB
l,µ,0 = 1

CCB
l,µ,±1 =

1
2

e
[
−l ± 2µ

]
CCB

l,µ,±2 =
1
8

e2
[
l2 − (3 ± 4µ)l + µ(4µ ± 5)

]
CCB

l,µ,±3 =
1
48

e3
[
−l3 + 3(3 ± 2µ)l2 −

(
12µ2 ± 33µ + 17

)
l

+2µ
(
±4µ2 + 15µ ± 13

)]
CCB

l,µ,±4 =
1

384
e4

[
l4 − 2(9 ± 4µ)l3 +

(
24µ2 ± 102µ + 95

)
l2

−2
(
±16µ3 + 96µ2 ± 165µ + 71

)
l

+µ
(
16µ3 ± 120µ2 + 283µ ± 206

)]

(C.5)

Note that these coefficients are equivalent to the Hansen coefficients Xa,b
c (e)

(Murray & Dermott 1999), with

CCS
l,µ,n = X−(l+1),µ

µ+n (e) and CCB
l,µ,n = Xl,µ

µ+n(e). (C.6)

The Hansen coefficients are defined according to[
r12(t)

a

]λ
exp

[
−iµφ′2(t)

]
=

∑
N

Xλ,µ
N exp [−iNΩBt] , (C.7)

which can be inverted, giving the following expression:

Xλ,µ
N (e) =

1
π

∫ π

0

cos
{
N [E − e sin (E)] − µφ′2

}
[1 − e cos (E)]−(λ+1) dE. (C.8)

They can also be computed recursively using the Newcomb operators.

251



APPENDIX D

ANGULAR MOMENTUM CONSERVATION IN CIRCUMBINARY DISKS

The equation of motion for the gas in the disk is

∂u
∂t

+ (u · ∇) u = −
1
Σ
∇P − ∇Φ + fvisc, (D.1)

where Φ is the gravitational potential of the binary and fvisc is the viscous force

per unit mass. Starting with the φ component,

∂uφ
∂t

+ ur
∂uφ
∂r

+
uφ
r

(
ur +

∂uφ
∂φ

)
= −

1
rΣ

∂P
∂φ
−

1
r
∂Φ

∂r
+ fvisc,φ, (D.2)

multiplying by r, and defining the angular momentum per unit mass l = ruφ, we

have
∂l
∂t

+ ur
∂l
∂r

+
uφ
r
∂l
∂φ

= −
1
Σ

∂P
∂φ
−
∂Φ

∂φ
+ tvisc

z , (D.3)

where tvisc
z = r fvisc,φ is the viscous torque per unit mass. Noting that left-hand

side of this equation is equal to ∂l/∂t + (u · ∇)l = dl/dt, we see that this is the

evolution equation for l. Next, multiplying Eq. (D.3) by rΣ, making use of the

identity

Σ
∂l
∂t

=
∂

∂t
(Σl) − l

∂Σ

∂t
, (D.4)

and the continuity equation,

∂Σ

∂t
= −∇ · (Σu) , (D.5)

we arrive at

∂

∂t
(rΣl) +

∂

∂r
(rΣurl) +

∂

∂φ

(
Σuφl

)
= −r

∂P
∂φ
− rΣ

∂Φ

∂φ
+ rΣtvisc

z . (D.6)

Integrating in φ, we then have

∂

∂t

(
dJ
dr

)
=
∂J̇adv

∂r
+

dTgrav

dr
−
∂J̇visc

∂r
, (D.7)
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where we have defined
dJ(r, t)

dr
=

∮
rΣldφ, (D.8)

J̇adv(r, t) = −

∮
rΣurldφ, (D.9)

dTgrav(r, t)
dr

= −

∮
rΣ
∂Φ

∂φ
dφ, (D.10)

and
∂J̇visc(r, t)

∂r
= −

∮
rΣtvisc

z dφ, (D.11)

which are the angular momentum per unit r, the inward flux of angular mo-

mentum due to advection, the gravitational torque per unit r, and the viscous

torque per unit r. Eq. (D.7) describes the rate of change of angular momentum

in a ring of unit width. In general, the viscous torque is given by

J̇visc = −

∮
r3νΣ

[
∂

∂r

(uφ
r

)
+

1
r2

∂ur

∂φ

]
dφ. (D.12)

Taking the time average of Eq. (D.7), and assuming a steady state (∂/∂t → 0),

we have
∂

∂r

(
〈J̇adv〉 − 〈J̇visc〉

)
+

〈
dTgrav

dr

〉
= 0. (D.13)

Finally, integrating radially from r to rout, and noting that dTgrav/dr vanishes far

from the binary, we find that

〈J̇〉r = 〈J̇adv〉rout − 〈J̇visc〉rout . (D.14)

We have defined

〈J̇〉r ≡ 〈J̇adv〉r − 〈J̇visc〉r − 〈T>r
grav〉, (D.15)

where

〈T>r
grav〉 ≡

∫ rout

r

〈
dTgrav

dr

〉
dr. (D.16)

Eq. (D.15) gives the net angular momentum flux through the disk at radius r,

including contributions from mass advection, viscous stress and gravitational
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torque. We also define its non-averaged analogue J̇, by dropping the time aver-

ages. Eq. (D.14) indicates that 〈J̇〉 is a constant across the disk.

Since J̇visc = 0 at the (physical) inner edge of the disk, we find that 〈J̇〉rin =

〈J̇adv〉rin − 〈T
tot
grav〉 (where 〈T tot

grav〉 is the gravitational torque exerted on the entire

disk) is the net angular momentum transfer rate to the binary, which we denote

〈J̇B〉. Therefore,

〈J̇〉r = 〈J̇B〉 (D.17)

for all r. In a steady state, the mass accretion rate Ṁ is constant throughout the

disk, therefore, we can write

J̇B = Ṁl0. (D.18)

The specific angular momentum l0 represents the net angular momentum re-

ceived by the binary per unit mass it accretes from the disk.
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