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Hot Jupiters are giant planets located extremely close to their host stars, with

orbital periods less than 5 days. Many aspects of hot Jupiter (HJ) formation

remain unclear, but several clues, such as the observed misalignment between

their orbital axes and their hosts’ spin axes, point to a dynamical origin. In

the first portion of this work we explore the stellar spin-orbit dynamics of one

such dynamical formation channel, the Lidov-Kozai mechanism. We show that

the coupling between the stellar spin and the planet orbit can lead to complex,

and sometimes chaotic, behavior of the stellar spin vector. Many features of this

behavior arise due to a set of resonances between the stellar spin axis precession

timescale and the Lidov-Kozai timescale. Under the assumption that the stellar

quadrupole does not induce precession in the planet’s orbit, given a system

with a set of initial parameters, we show that it is possible to predict whether

the system can attain high spin-orbit misalignments. In the second portion of

this work, we discuss tidal dissipation in giant planets, another aspect that is

crucial to dynamical HJ formation theories. We show that tidal dissipation in the

cores of giant planets can be significant, and can help reconcile inconsistencies in

the tidal dissipation efficiencies inferred from observations of Jupiter’s moons

and from high-eccentricity HJ migration theories. Finally, we improve upon

existing core tidal dissipation theories by presenting semi-analytical formulae

for dissipation in a core surrounded by a polytropic n = 1 envelope.
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CHAPTER 1

INTRODUCTION

The discovery that as many as 1% of solar-type stars host giant Jupiter-

sized planets with periods of only 1 − 5 days (Udry and Santos, 2007) has in

many ways revolutionized our understanding of planetary system formation

processes. In fact, these “hot Jupiters” (HJs) were the first indication of just how

little we understand about planet formation. Before their discovery, when the

Solar System was our only example of a planetary system, it was thought that

planet formation – or, at least, what kinds of planets form where – was fairly

clear-cut, with rocky planets close to the Sun (inside the snow line, the distance

beyond which water and other volatiles can condense into solid form), and gas

and ice giants outside the snow line. The discovery of HJs turned all of that on

its head and has led to a wealth of interesting and innovative theoretical work.

The extreme proximity of HJs to their host stars is not their only peculiar

feature. While many HJs reside on circular orbits, a non-negligible fraction of

them have orbital eccentricities in excess of 0.1, with some as high as 0.4 (Udry

and Santos, 2007). Furthermore, many HJs have been found to have orbital

axes that are misaligned relative to the spin axes of their host stars (Albrecht

et al., 2012; Hébrard et al., 2008, 2010; Narita et al., 2009; Triaud et al., 2010;

Winn et al., 2009). Though several potential ways of generating primordial spin-

orbit misalignment (Bate et al., 2010; Batygin, 2012; Batygin and Adams, 2013;

Lai, 2014; Lai et al., 2011; Spalding and Batygin, 2014) and eccentricity (Tsang

et al., 2014) have now been proposed, these observations generally point to a

dynamical origin for these enigmatic planets.

Any dynamical process thought to be responsible for creating hot Jupiters
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typically consists of several steps. First, a giant planet (a proto-HJ) forms at a

few AU’s distance from their host star, just like the giant planets in our Solar Sys-

tem. Second, a dynamical interaction throws the proto-HJ into a highly eccentric

orbit. Potential such interactions include planet-planet interactions or scattering

(Chatterjee et al., 2008; Ford and Rasio, 2008; Jurić and Tremaine, 2008; Petro-

vich, 2015a; Rasio and Ford, 1996; Weidenschilling and Marzari, 1996; Zhou

et al., 2007), secular chaos (Wu and Lithwick, 2011), and the Lidov-Kozai effect

induced by a distant companion (Correia et al., 2011; Fabrycky and Tremaine,

2007; Naoz et al., 2012; Petrovich, 2015b; Storch et al., 2014; Wu and Murray,

2003). After the proto-HJ has been thrown into an eccentric orbit, tidal dissipa-

tion in its interior at periastron acts to remove energy from its orbit and bring

the planet closer and closer to its host.

This thesis work focuses on one particular method of eccentricity excitation:

the Lidov-Kozai mechanism [also erroneously known as Kozai, or Kozai-Lidov;

Kozai (1962); Lidov (1962)] induced by a distant stellar companion. This mech-

anism, described in detail in chapters 2 and 3, provides a natural and generally

robust means of generating spin-orbit misalignment. However, the process of

generating misalignment is far from trivial, due to complications arising from

coupling between the planet orbital angular momentum vector and the stellar

spin vector. The dynamics arising from this coupling are the focus of chapters

2, 3, and 4 of this work.

The tidal dissipation step of HJ formation is also not trivial. It has long been

known that the tidal dissipation efficiency of our own Jupiter, obtained typi-

cally by considering the present positions of the Galilean moons (Goldreich and

Soter, 1966; Yoder and Peale, 1981), and more recently by fitting to direct astro-
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metric measurements of their movement (Lainey et al., 2009), cannot be easily

explained by the simple turbulent viscosity in Jupiter’s fluid envelope (Goldre-

ich and Nicholson, 1977). Furthermore, in context of the standard formalism

for tidal dissipation, the so-called weak friction theory (Alexander, 1973; Eggle-

ton et al., 1998; Hut, 1981), the constraints placed on Jupiter’s tidal dissipation

are incompatible with constraints placed on the dissipation in HJs based on the

maximum lifetimes of their host stars. Chapters 5 and 6 of this work present

one means of alleviating both of these issues by considering dissipation that

happens in the (hypothetically present) solid core of the giant planet, rather

than in its envelope.

Recently, it has been suggested that there may not be a universal channel

through which HJs are formed (Dawson and Murray-Clay, 2013; Dong et al.,

2014; Knutson et al., 2014). Although as many as 50% of stars hosting hot

Jupiters may have stellar companions (Knutson et al., 2014), the distributions of

HJ semi-major axes obtained from simulations of the Lidov-Kozai mechanism

are not currently compatible with the observed distribution. Nevertheless, sim-

ulations point to the Lidov-Kozai mechanism being robust enough that at least

a sub-population of HJs could potentially be formed through it. Unfortunately,

the current numbers of known HJs are not high enough to be able to identify

different sub-populations. Nevertheless, because HJs make prime targets for

ground-based radial velocity surveys, more and more of them should be dis-

covered in the coming years, and our statistics will slowly but surely improve.

If/when the Lidov-Kozai sub-population of HJs is discovered, one hopes that

the work presented herein will be at least a little useful in characterizing it.
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CHAPTER 2

CHAOTIC DYNAMICS OF STELLAR SPIN IN BINARIES AND THE

PRODUCTION OF MISALIGNED HOT JUPITERS

2.1 Abstract

Many exoplanetary systems containing hot Jupiters are observed to have highly

misaligned orbital axes relative to the stellar spin axes. Lidov-Kozai oscillations

of orbital eccentricity/inclination induced by a binary companion, in conjunc-

tion with tidal dissipation, is a major channel for the production of hot Jupiters.

We demonstrate that gravitational interaction between the planet and its oblate

host star can lead to chaotic evolution of the stellar spin axis during Lidov-Kozai

cycles. As parameters such as the planet mass and stellar rotation period vary,

periodic islands can appear in an ocean of chaos, in a manner reminiscent of

other dynamical systems. In the presence of tidal dissipation, the complex spin

evolution can leave an imprint on the final spin-orbit misalignment angles.

2.2 Introduction

About 1% of solar-type stars host giant planets with periods of ∼ 3 days (Udry

and Santos, 2007). These “hot Jupiters” could not have formed in situ, given

the large stellar tidal gravity and radiation fields close to their host stars. In-

stead, they are thought to have formed beyond a few astronomical units (AU)

The contents of this chapter are adapted from an article published in Science magazine as
"Chaotic Dynamics of Stellar Spin in Binaries and the Production of Misaligned Hot Jupiters"
(Storch et al., 2014)
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and migrated inward. However, the physical mechanisms of the migration re-

main unclear. In the last few years, high stellar obliquities have been observed

in many hot Jupiter systems, i.e., the spin axis of the host star and the planetary

orbital angular momentum axis are misaligned (Albrecht et al., 2012; Hébrard

et al., 2008, 2010; Narita et al., 2009; Triaud et al., 2010; Winn et al., 2009). Planet

migration in protoplanetary disks (Goldreich and Tremaine, 1980; Lin et al.,

1996) is usually expected to produce aligned orbital and spin axes [however,

see Bate et al. (2010); Batygin (2012); Batygin and Adams (2013); Lai (2014); Lai

et al. (2011)], so the observed misalignment suggests that other formation chan-

nels may be required, such as strong planet-planet scatterings (Ford and Rasio,

2008; Jurić and Tremaine, 2008), secular interactions/chaos between multiple

planets (Nagasawa et al., 2008; Wu and Lithwick, 2011), and the Lidov-Kozai

(LK) effect induced by a distant companion (Correia et al., 2011; Fabrycky and

Tremaine, 2007; Naoz et al., 2012; Wu and Murray, 2003). Other observations

suggest that multiple formation channels of hot Jupiters may be required (Daw-

son and Murray-Clay, 2013; Dong et al., 2014; Knutson et al., 2014).

In the “LK+tide” scenario, a giant planet initially orbits its host star at a few

AU and experiences secular gravitational perturbations from a distant compan-

ion (a star or planet). When the companion’s orbit is sufficiently inclined rel-

ative to the planetary orbit, the planet’s eccentricity undergoes excursions to

large values, while the orbital axis precesses with varying inclination. At pe-

riastron, tidal dissipation in the planet reduces the orbital energy, leading to

inward migration and circularization of the planet’s orbit.

As the planet approaches the star in an LK cycle, the planet-star interaction

torque due to the rotation-induced stellar quadrupole makes the stellar spin and
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the planetary angular momentum axes precess around each other. Although

the equations for such precession in the context of triple systems are known

(Correia et al., 2011; Eggleton and Kiseleva-Eggleton, 2001), previous works on

the “LK+tide” migration either neglected such spin-orbit coupling or included

it without systematically examining the spin dynamics or exploring its conse-

quences for various relevant parameter regimes (Correia et al., 2011; Fabrycky

and Tremaine, 2007; Lithwick and Wu, 2014; Naoz et al., 2012; Wu and Mur-

ray, 2003). However, the stellar spin has the potential to undergo rich evolution

during the Lidov-Kozai migration, which may leave its traces in the spin-orbit

misalignments in hot Jupiter systems. Indeed, there are several examples of

chaotic spin-orbit resonances in the Solar system. For instance, Saturn’s satel-

lite Hyperion experiences chaotic spin evolution due to resonances between

spin and orbital precession periods (Wisdom et al., 1984). The rotation axis of

Mars undergoes chaotic variation as well, as a result of resonances between the

spin precession and a combination of orbital precession frequencies (Laskar and

Robutel, 1993; Touma and Wisdom, 1993).

We demonstrate here that gravitational interaction between the stellar spin

and the planetary orbit can indeed induce a variety of dynamical behavior for

the stellar spin evolution during LK cycles, including strongly chaotic behavior

(with Lyapunov times as short as a few Myr) and perfectly regular behavior in

which the stellar spin stays aligned with the orbital axis at all times. We show

that in the presence of tidal dissipation the memory of chaotic spin evolution can

be preserved, leaving an imprint on the final spin-orbit misalignment angles.
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2.3 Lidov-Kozai Cycles and Spin-Orbit Coupling

We consider a planet of mass Mp initially in a nearly circular orbit around a star

of mass M? at a semi-major axis a, with a distant binary companion of mass

Mb, semi-major axis ab and eccentricity eb, which we set to 0. In that case, if the

planet’s initial orbital inclination relative to the binary axis, denoted by θ0
lb, falls

within the range {40◦, 140◦}, the distant companion induces cyclic variations

in planetary orbit inclination and eccentricity, with a maximum eccentricity of

emax '
√

1− (5/3) cos2 θ0
lb (Kozai, 1962; Lidov, 1962). These LK cycles occur at a

characteristic rate given by

t−1
k = n

(
Mb

M?

)(
a

ab

)3

=

(
2π

106yr

)(
Mb

M?

)(
M?

M�

)1/2( a

1AU

)3/2( ab
100AU

)−3

, (2.1)

where n = 2π/P is the mean motion of the planet (P is the orbital period). Note,

however, that the presence of short-range forces, such as General Relativity and

tidal distortions, tend to reduce the maximum attainable eccentricity, so that

the actual emax may be smaller than the “pure” (i.e. without short-range forces)

LK value given above (Fabrycky and Tremaine, 2007; Holman et al., 1997; Wu

and Murray, 2003). Along with the eccentricity and inclination variations, the

planet orbital angular momentum vector precesses around the binary axis (L̂b)

at an approximate rate which, in the absence of tidal dissipation, is given by

(Sec. 2.8.1)

Ωpl ≈
3

4
t−1
k cos θ0

lb

√
1− e2

0

[
1− 2

(
1− e2

0

1− e2

)
sin2 θ0

lb

sin2 θlb

]
, (2.2)

where e0 is the initial eccentricity. Because of the rotation-induced stellar

quadrupole, the planet induces precession in the stellar spin orientation, gov-

7



erned by the equation
dŜ

dt
= ΩpsL̂× Ŝ. (2.3)

Here Ŝ and L̂ are unit vectors along the stellar spin and planet orbital angular

momentum axes, respectively, and the precession frequency Ωps is given by

Ωps = −3GMp(I3 − I1)

2a3(1− e2)3/2

cos θsl

S
(2.4)

= −2.38× 10−8

(
2π

yr

)
1

(1− e2)3/2

(
2kq
k?

)(
103Mp

M?

)(
M?

M�

)1/2

×

×

(
Ω̂?

0.1

)( a

1AU

)−3
(
R?

R�

)3/2

cos θsl,

where I3 and I1 are principal moments of inertia of the star, S is its spin angular

momentum, Ω̂? ≡ Ω?/
√
GM?/R3

? is its spin frequency in units of the breakup

frequency, R? is the stellar radius, θsl is the angle between the stellar spin and

planet angular momentum axes, and we have used (I3 − I1) ≡ kqM?R
2
?Ω̂

2
? and

S ≡ k?M?R
2
?Ω?. For a solar-type star, kq ≈ 0.05, and k? ≈ 0.1 (Claret and

Gimenez, 1992). The stellar quadrupole also affects the planet’s orbit, by intro-

ducing additional periastron advance, at a rate of order−ΩpsS/(L cos θsl) (where

L ≡ Mp

√
GM?a(1− e2) is the orbital angular momentum), and making L̂ pre-

cess around Ŝ at the rate (S/L)Ωps (Sec. 2.8.1).

During the LK cycle, orbital eccentricity varies widely from 0 to emax, and

thus Ωps and Ωpl change from Ωps,0 and Ωpl,0 to Ωps,max and Ωpl,max, respectively.

However, Ωps is more sensitive to eccentricity variation than Ωpl, and attains a

larger range of values. We therefore expect three qualitatively different regimes

for the spin evolution.

Regime I, |Ωps,max| <∼ |Ωpl,max| (“nonadiabatic”): |Ωps| is always smaller than

|Ωpl|. We expect Ŝ to effectively precess around L̂b, the binary angular momen-

tum axis (about which L̂ is precessing), maintaining an approximately constant

8



angle θsb.

Regime II, |Ωps,max| >∼ |Ωpl,max| and |Ωps,0| <∼ |Ωpl,0| (“transadiabatic”): A secu-

lar resonance occurs when the stellar precession rate approximately matches the

orbital precession rate (|Ωps| ≈ |Ωpl|). As the eccentricity varies from 0 to emax

during the LK cycle, the system transitions from nonadiabatic to adiabatic. We

expect this resonance crossing to lead to complex and potentially chaotic spin

evolution.

Regime III, |Ωps,0| >∼ |Ωpl,0| (“adiabatic”): |Ωps| is always larger than |Ωpl|.

We expect the spin axis to follow L̂ adiabatically, maintaining an approximately

constant spin-orbit misalignment angle θsl.

For a given planet semi-major axis a and binary semi-major axis ab, the di-

vision between different regimes depends on the product of planet mass and

stellar spin (Fig. 2.7). In particular, systems with low Mp and Ω? lie in Regime I,

while those with large Mp and Ω? lie in Regimes II and III.

2.4 Numerical Exploration

We first study the evolution of stellar spin in “pure” LK cycles: we integrate

Eq. (2.3) together with the evolution equations for the planet’s orbital elements,

driven by the quadrupole potential from the binary companion (Sec. 2.8.1), but

excluding all short-range forces. Although at the octupole level the companion

may induce chaotic behavior in the planet orbit (Ford et al., 2000; Katz et al.,

2011; Naoz et al., 2011, 2013), the effect is negligible if aeb/[ab(1 − e2
b)] � 0.01

and is completely suppressed for eb = 0. To isolate the dynamics of stellar
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Figure 2.1: Sample evolution curves for the “pure” Lidov-Kozai system, demon-
strating how the stellar spin evolves through LK cycles. The parameters for this
run are a = 1 AU, ab = 200 AU, eb = 0, M? = Mb = 1M�, Ω̂? = 0.05, Mp = 4.6MJ ,
and initial e0 = 0.01, θ0

lb = 85◦. The spin’s erratic evolution is suggestive of
chaos; we therefore plot a “real” trajectory (red solid lines) and a “shadow” tra-
jectory (orange dashed lines), used to evaluate the degree of chaotic behavior.
The trajectories are initialized such that the “real” starts with Ŝ parallel to L̂,
and the “shadow” with Ŝ misaligned by 10−6 deg with respect to L̂. This figure
corresponds to the orange scatter plot of Fig. 2.2 and the orange curve of Fig. 2.3
(left). The spin evolution is highly chaotic.
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spin evolution, we exclude the precession of L̂ around Ŝ and all other short-

range forces; thus, while the planet orbit influences the stellar spin, the stellar

spin does not affect the orbit in any way. We consider different combinations of

planet mass and stellar rotation rate to illustrate the different regimes described

above (we consider M? = Mb = 1M� and R? = 1R� in all the examples shown

in this paper). We present four “canonical” cases that encapsulate the range of

the observed spin dynamics, including a sample trajectory in the transadiabatic

regime (Regime II) (Fig. 2.1).

We find excellent agreement with the qualitative arguments outlined above.

In Regime I (“nonadiabatic”, Fig. 2.2, top left) the spin evolution is regular and

periodic. While we do not plot the spin-binary misalignment angle (θsb), it in-

deed stays constant. The “adiabatic” regime (Fig. 2.2, bottom right) is difficult

to access for trajectories that start with high initial misalignment of Ŝ and L̂, due

to the cos θsl factor in the spin precession frequency. Those trajectories that start

with low initial θsl (or with θ0
sl close to 180◦) maintain that angle, as expected.

In Regime II (“transadiabatic”), two different types of behavior are observed.

For most parameters that fall within this regime, the spin evolution is strongly

chaotic, as indicated by the large degree of scatter that fills up the phase space

(Fig. 2.2, top right and bottom left). However, periodic islands exist in the mid-

dle of this chaos, in which the stellar spin behavior is regular (Fig. 2.2, bottom

left; Fig. 2.9).

Since the stellar spin and planet orbital axes in real physical systems typi-

cally start out aligned, we specialize to the trajectories with θ0
sl = 0 for the re-

mainder of this paper. To assess the degree of chaos in each of the sample cases

(Fig. 2.2), we evolve a “shadow” trajectory in addition to the real one (Fig. 2.1),
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Figure 2.2: Surfaces of section of the angle (θsl) between Ŝ and L̂ vs the pre-
cessional phase (φsl) of Ŝ around L̂ for the “pure” LK system, demonstrating
the presence or lack of chaos in the stellar spin evolution. In all of these sam-
ple cases, a = 1 AU, ab = 200 AU, eb = 0, M? = Mb = 1M�, and e0 = 0.01,
θ0

lb = 85◦. Each panel is composed of multiple unique trajectories, correspond-
ing to different initial θ0

sl (with the initial spin-binary angle θ0
sb ranging from 0 to

π, and assuming Ŝ is initially in the same plane as L̂ and L̂b). In each panel the
colored trajectory indicates the one with θ0

sl = 0. Each case is evolved for 12.7
Gyr, corresponding to ∼1500 LK cycles. Each point in a trajectory is recorded at
the argument of pericenter ω = π/2(+2πn, with n an integer), corresponding to
every other eccentricity maximum (Fig. 2.8). Top left: Regime I (nonadiabatic);
Ω̂? = 0.003, Mp = 1MJ . We show 18 unique trajectories, with θ0

sb ranging from
5◦ to 175◦; the green line corresponds to θ0

sl = 0. The “equilibrium” states at
(θsl, φsl) ≈ (40◦, 90◦) and (40◦, 270◦) correspond to Ŝ parallel and anti-parallel
to L̂b. Top right: Regime II (transadiabatic); Ω̂? = 0.05, Mp = 4.6MJ ; the or-
ange dots show θ0

sl = 0, while the black dots are a composite of several different
θ0

sl. Bottom left: Regime II (transadiabatic); Ω̂? = 0.03, Mp = 1.025MJ ; 11 peri-
odic or quasi-periodic trajectories and a composite chaotic region. The red dot
at (cos θsl, φsl) ≈ (0.06, 1.8π) (see arrow) corresponds to a periodic island with
θ0

sl = 0. Bottom right: Regime III (onset of adiabaticity); Ω̂? = 0.05, Mp = 20MJ ; 5
quasi-periodic trajectories and a composite chaotic region. The blue line corre-
sponds to θ0

sl = 0. Note that while both the orange and red cases are in Regime
II, the orange one is highly chaotic, and the red resides in a periodic island.
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Figure 2.3: Left panel: Distance between two phase space trajectories, starting
at slightly different initial spin orientations, for the “pure” Lidov-Kozai system.
The first (real) starts with Ŝ parallel to L̂, the other (shadow) with Ŝ misaligned
by 10−6 deg with respect to L̂, for each of the sample θ0

sl = 0 cases depicted
in Fig. 2.2. The phase space distance is calculated as δ = |Ŝreal − Ŝshadow| and
therefore has a maximum value of 2. The lines are color-coded to correspond
to each of the cases of Fig. 2.2. The grey dashed line demonstrates that for the
chaotic orange curve, δ ∝ eλt, with λ ∼ 0.18 Myr−1. Right panel: Same as left, but
including orbit precession due to stellar quadrupole and periastron advances
due to General Relativity, stellar quadrupole, planet oblateness, and static tides
in the planet. The orange curve shows chaotic growth with λ ∼ 0.15 Myr−1.
The red curve, which is periodic on the left, is mildly chaotic here, with λ ∼
0.02 Myr−1.

with initial conditions very close to the original ones, and monitor how fast the

two trajectories diverge, particularly in the spin direction. As expected, three

out of four of our sample cases do not exhibit chaos, while the fourth, in the

transadiabatic regime, is strongly chaotic, with a Lyapunov time of λ−1 ∼ 5.6

Myr, corresponding to only ∼ 1 LK cycle (Fig. 2.3, left).

Next we include the precession of L̂ about Ŝ and other short range forces

(periastron advances due to General Relativity, stellar quadrupole, planet’s ro-

tational bulge, and tidal distortion of the planet) (Fabrycky and Tremaine, 2007;

Wu and Murray, 2003) in our calculations. We find that including these short-

range forces for our four sample cases (Fig. 2.3, right) does not change our gen-
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eral conclusion that chaotic evolution occurs in the transadiabatic regime, al-

though it can shift the locations (in the parameter space) of periodic islands.

Clearly, the stellar spin behavior in the transadiabatic regime is very com-

plex: highly chaotic for certain parameters, more regular for others. To ex-

plore this diversity further, we construct a “bifurcation” diagram (Fig. 2.4), with

which we could examine the degree of chaos over a large range of parameter

values (particularly the planet mass). Visualized in this way, the topology of the

chaos is more obvious: most of the mass bins are highly chaotic, but they are in-

terspersed with individual, isolated quasiperiodic islands. To better understand

this complex topology, we have developed a simpler analytical toy model that

captures many of the features of this system (Sec. 2.8.3).

Wide-spread chaos in dynamical systems is typically driven by overlapping

resonances (Chirikov, 1979). Repeated secular spin-orbit resonance crossings

(|Ωps| ∼ |Ωpl|) during LK cycles play an important role in producing the ob-

served chaotic spin behavior. On the other hand, LK cycles themselves result

from the near 1 : 1 resonance ($̇ = Ω̇) between the longitude of the periapse

$ and the longitude of the ascending node Ω of the planet’s orbit. The back-

reaction of the stellar spin on the orbit can naturally couple these two reso-

nances. We suggest that all these effects are important in the development of

the chaotic stellar spin evolution.

2.5 Tidal dissipation and memory of chaotic evolution

Having explored in some detail the variety of behaviors exhibited by stellar spin

during LK cycles, we now assess the impact of this evolution on the production
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Figure 2.4: “Bifurcation” diagram of spin-orbit misalignment angle vs planet
mass, including all short-range effects. The procedure described in Fig. 2.2 is
carried out for each value of planet mass: the spin-orbit misalignment angle is
recorded at every other eccentricity maximum for ∼ 1500 LK cycles. The pa-
rameters for this plot are a = 1 AU, ab = 200 AU, e0 = 0.01, θ0

lb = 85◦, Ω̂? = 0.03.
High degree of scatter in a single mass bin indicates highly chaotic behavior.
Note that multiple quasiperiodic islands appear in the middle of highly chaotic
regions.

of hot Jupiters, particularly on their final stellar spin-orbit misalignment angles,

by adding tidal dissipation to our equations. We employ the standard weak

friction model of tidal dissipation in giant planets with constant tidal lag time

(Alexander, 1973; Hut, 1981). In order to ensure that all our runs lead to circu-

larized planets and a final θsl within about 1010yrs, we enhance tidal dissipation

by a factor of 14 (Fig. 2.5, left) and 1400 (Fig. 2.5, right) relative to the fiducial

value for Jupiter (Storch and Lai, 2014) (Sec. 2.8.1). As long as the tidal evolution

timescale of the orbit is much longer than the Lyapunov time for the chaotic spin

evolution, we do not expect this enhancement to have major qualitative effect
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on the final observed spin-orbit misalignment angle.

Tidal dissipation leads to a gradual decrease in the proto-hot Jupiter’s semi-

major axis and eventual circularization close to the host star (Fig. 2.10). As the

planet’s orbit decays, LK cycles become suppressed by short-range forces. Also,

as the semi-major axis decays, |Ωps/Ωpl| increases. Thus, even if we choose ini-

tial conditions that lie squarely in the nonadiabatic regime (Regime I), as a de-

creases, all trajectories will eventually go through the |Ωps| = |Ωpl| secular res-

onance and end up fully adiabatic. At that point, the spin-orbit misalignment

angle freezes out to some final, constant value θf
sl.

In all of the numerical examples of non-dissipative evolution discussed

above, we have held the value of the stellar spin rate Ω? constant. However,

because the divisions between different spin evolution regimes depend on Ω?,

stellar spindown can potentially have a substantial effect on the degree of chaos

in the system. Isolated solar-type stars spin down via magnetic braking associ-

ated with the stellar wind (Gallet and Bouvier, 2013). For simplicity, we use the

empirical Skumanich Law (Skumanich, 1972) to add stellar spindown to our

evolution equations, starting with an initial spin period of 2.3 days; the final

spin period (at t = 5 Gyr) is 28 days.

To assess the influence of chaotic stellar spin evolution on the final distribu-

tion of spin-orbit misalignment angles, we create a different kind of “bifurca-

tion” diagram (Fig. 2.5). As in the non-dissipative case (Fig. 2.4), we consider

a range of planet masses. For each Mp, we take a set of initial conditions that

are identical in all but the initial orbit-binary misalignment angle θlb, which we

randomly choose from a very small range: θ0
lb ∈ {86.99◦, 87.01◦} (Fig. 2.5, left)

and θ0
lb ∈ {84.95◦, 85.05◦} (Fig. 2.5, right). We evolve these trajectories until the
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hot Jupiter circularizes and θsl reaches its final value. We find that the scatter

in θf
sl depends on the planet mass. The scatter generally increases with increas-

ing Mp, but drops sharply in the adiabatic regime (for Mp >∼ 4.4MJ in the left

panel of Fig. 2.5). There also exist quasiperiodic islands, where θf
sl has a rather

small spread. Also, a range of misalignment angles around 90◦ appears to be ex-

cluded, with this range decreasing with increasing planet mass. Given the very

small range of initial conditions, the evolution of any regular, non-chaotic sys-

tem should result in only one final misalignment angle. Therefore, we suggest

that this bimodality is the result of the system passing through the |Ωps| ∼ |Ωpl|

secular resonance, and the complex and possibly chaotic dynamics that occur

during that time. We tentatively attribute the decrease of bimodality with in-

creasing mass to an increase in chaotic behavior. The final semi-major axis af

also exhibits “chaotic” spreads and periodic islands. Thus, in effect, the final

distributions of θf
sl and af carry an imprint of the spin’s past chaotic evolution.

As a final step, we run a “mini” population synthesis calculation, for a fixed

value of a0 and ab and a broader range of initial orbital inclinations (Fig. 2.6). A

sharp contrast exists between the distribution of final spin-orbit misalignment

angles at low Mp and high Mp. At low Mp a bimodal distribution of θf
sl is pro-

duced (this bimodality has been found in some previous population synthesis

calculations (Correia et al., 2011; Fabrycky and Tremaine, 2007)). At high Mp

the evolution is mostly adiabatic, producing very little spin-orbit misalignment.

This is a clear signature of the complex spin evolution in the observed stellar

obliquity. Other factors, such as the stellar spindown rate and planetary tidal

dissipation rate, can also affect the final misalignment distribution.
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Figure 2.5: Two “bifurcation” diagrams of the final spin-orbit misalignment an-
gle (top) and semi-major axis (bottom) vs planet mass for a small range of initial
planet-binary inclinations, including the effects of tidal dissipation and stellar
spindown. Here ab = 200 AU, e0 = 0.01, Ω̂?,0 = 0.05. Each data point repre-
sents the outcome of a single complete run starting with a0 = 1.5 AU (left) and
a0 = 1 AU (right) and ending when the planet has sufficiently circularized (final
eccentricity ef ≤ 0.1) and the final spin-orbit angle θf

sl is attained. For each run,
we randomly select an initial inclination θ0

lb from the range 86.99◦ − 87.01◦ (left)
and 84.95◦ − 85.05◦ (right). Each mass bin contains ∼ 200 points. The degree
of scatter in θf

sl generally increases with increasing Mp, but drops sharply in the
adiabatic regime (for Mp >∼ 4.4MJ in the left panel). Quasiperiodic islands are
still present (e.g. at ∼3.8MJ in the right panel).

2.6 Discussion

The discovery of spin-orbit misalignment in close-in exoplanetary systems in

the last few years was a major surprise in planetary astrophysics. Much of the

recent theoretical work has focused on the non-trivial evolution of the planetary

orbit (such as orbital flip) due to few-body gravitational interactions (Katz et al.,

2011; Lithwick and Wu, 2014; Naoz et al., 2011). However, as we have shown

here, the spin axis of the host star can undergo rather complex and chaotic evo-
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Figure 2.6: Distribution of the final spin-orbit misalignment angles as a function
of planet mass, including the effects of tidal dissipation and stellar spin down,
for initial planet-binary inclinations θ0

lb in the range 85◦− 89◦. Here a0 = 1.5 AU,
ab = 200 AU, e0 = 0.01, Ω̂?,0 = 0.05. Each evolutionary trajectory is integrated
until it has sufficiently circularized (ef ≤ 0.1), for a maximum of 5 Gyr. If by
the end of 5 Gyr the planet is not circularized, it is discarded. Note that the
bimodality featured in Fig. 2.5 is still present here, despite the wider range of
initial inclinations. At Mp = 5MJ the evolution is mostly adiabatic, and there-
fore it is difficult to generate misalignment.
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lution, depending on the planetary mass and the stellar rotation rate. In many

cases, the variation of the stellar spin axis relative to the binary axis is much

larger than the variation of the orbital axis. Therefore, to predict the final spin-

orbit misalignments of hot Jupiter systems in any high-eccentricity migration

scenario, it is important to properly account for the complex behavior of stellar

spin evolution.

In the above, we have focused on the Lidov-Kozai mechanism for the forma-

tion of hot Jupiters, but similar consideration can be applied to the formation of

short-period stellar binaries (Fabrycky and Tremaine, 2007). Indeed, spin-orbit

misalignment angles have been measured for a number of close-in stellar bina-

ries (Albrecht et al., 2009, 2014; Triaud et al., 2013). Because of the much larger

stellar spin precession rate in stellar binaries compared to the star-planet sys-

tems, the stellar spin evolution is expected to be largely in the adiabatic regime

(depending on various parameters; Fig. 2.7), in which case the observed spin-

orbit misalignment angles in close binaries would reflect their initial values at

formation.

It is a curious fact that the stellar spin axis in a wide binary (∼ 100 AU apart)

can exhibit such a rich, complex evolution. This is made possible by a tiny

planet (∼ 10−3 of the stellar mass) that serves as a link between the two stars: the

planet is “forced” by the distant companion into a close-in orbit, and it “forces”

the spin axis of its host star into wild precession and wandering.

The “binary+planet+spin” system studied in this paper exhibits many in-

triguing dynamical properties. While we have provided a qualitative under-

standing for the emergence of chaos in this system in terms of secular reso-

nance crossing, much remains to be understood theoretically. Most remarkable
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is the appearance of periodic islands as the system parameters (planet mass and

stellar spin) vary – a feature reminiscent of some well-known chaotic systems

(Lichtenberg and Lieberman, 1992; Strogatz, 1994).
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2.8 Supplementary Materials

2.8.1 Materials and Methods

For the “pure” Lidov-Kozai problem discussed in the earlier part of the main

text, we integrate the standard quadrupole Lidov-Kozai equations for the

planet’s orbital elements (assuming Mp �M?,Mb). These are given by

de

dt
= t−1

k

15

8
e
√

1− e2 sin 2ω sin2 θlb,

dΩ

dt
= t−1

k

3

4

cos θlb (5e2 cos2 ω − 4e2 − 1)√
1− e2

, (2.5)

dθlb

dt
= −t−1

k

15

16

e2 sin 2ω sin 2θlb√
1− e2

,

dω

dt
= t−1

k

3
[
2(1− e2) + 5 sin2 ω(e2 − sin2 θlb)

]
4
√

1− e2
,
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where e is the planet’s orbital eccentricity, θlb is the angle between the planet

orbital angular momentum axis and the binary axis L̂b, Ω is the longitude of the

ascending node, ω is the argument of periastron, and t−1
k is the characteristic LK

rate, given by Eq. (2.1) of the main text. We choose the binary orbital plane to be

the invariant plane. In all the cases we consider, we take as our initial condition

Ω0 = 0 and ω0 = 0 (thus, ω always circulates rather than librates; see Fig. 2.8).

Note, however, that this is not a particularly special choice, since for the initial

inclinations θlb we consider (85◦−89◦) the maximum eccentricity is the same for

the circulating and librating cases, and the rates of precession of the node (Ωpl,

Eq. 2.2) are only slightly different.

We evolve the precession of the stellar spin according to the equation

dŜ

dt
= ΩpsL̂× Ŝ, (2.6)

where Ωps is given by Eq. (2.4), and L̂ = (sin θlb sin Ω,− sin θlb cos Ω, cos θlb) in the

inertial frame where the z-axis is parallel to the binary axis L̂b.

In the latter part of the main text, we add short-range forces to our system.

We use the expressions given in Wu and Murray (2003) for periastron advances

due to General Relativity, planet spin-induced quadrupole, and static tide in the

planet. We also add nodal and apsidal precession of the planetary orbit due to

the spin-induced stellar quadrupole. This introduces the following terms to the

orbital evolution equations:

dω

dt
= ω?

(
1− 3

2
sin2 θsl −

cos θlb

sin θlb

cos θsl
∂ cos θsl

∂θlb

)
,

dΩ

dt
= ω?

cos θsl

sin θlb

∂ cos θsl

∂θlb

, (2.7)

dθlb

dt
= −ω?

cos θsl

sin θlb

∂ cos θsl

∂Ω
,
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where

cos θsl = L̂ · Ŝ = Sx sin θlb sin Ω− Sy sin θlb cos Ω + Sz cos θlb,

∂ cos θsl

∂θlb

= Sx cos θlb sin Ω− Sy cos θlb cos Ω− Sz sin θlb, (2.8)

∂ cos θsl

∂Ω
= Sx sin θlb cos Ω + Sy sin θlb sin Ω,

and ω? = −ΩpsS/(L cos θsl).

Finally, we add tidal dissipation in the planet to our equations. We use the

standard weak friction tidal dissipation model (Alexander, 1973; Hut, 1981):

1

a

da

dt
=

1

ta

1

(1− e2)15/2

[
(1− e2)3/2f2(e)

Ωs,p

n
− f1(e)

]
, (2.9)

1

e

de

dt
=

11

4

1

ta

1

(1− e2)13/2

[
(1− e2)3/2f4(e)

Ωs,p

n
− 18

11
f3(e)

]
, (2.10)

where a is the semi-major axis, Ωs,p is the spin rate of the planet, the functions

f1 − f4 are defined as

f1(e) = 1 +
31

2
e2 +

255

8
e4 +

185

16
e6 +

25

64
e8,

f2(e) = 1 +
15

2
e2 +

45

8
e4 +

5

16
e6,

f3(e) = 1 +
15

4
e2 +

15

8
e4 +

5

64
e6, (2.11)

f4(e) = 1 +
3

2
e2 +

1

8
e4,

(2.12)

and ta is a characteristic timescale, given by

1

ta
= 6k2∆tL

(
M?

Mp

)(
Rp

a

)5

n2, (2.13)

where n is the mean motion of the planet, k2 is the tidal Love number and ∆tL is

the tidal lag time. For Jupiter, k2 = 0.37 and we take ∆tL = 0.1 s (corresponding

to k2/Q ≈ 10−5 at a tidal forcing period of 6.5 hours). We therefore use ∆tL =
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0.1χ s, where χ is a tidal enhancement factor, which we take to be 14 for Fig. 2.5

(left) and 1400 for Fig. 2.5 (right), in order to ensure that the planets in our test

cases circularize within the lifetime of their host stars. For all the sample cases

considered in this work, we assume the planet spin to be pseudosynchronous

with the orbit, i.e. Ωs,p/n = f2(e)/[(1 − e2)3/2f5(e)], with f5(e) = 1 + 3e2 +

(3/8)e4. Relaxing this assumption does not qualitatively change our results. (For

pseudosynchronous spin, the periastron advance due to planet’s rotation bulge

is always smaller than that due to tidal distortion.)

Equivalent evolution equations for the spin-triple system can be found in

Correia et al. (2011) and Eggleton and Kiseleva-Eggleton (2001).

2.8.2 Supplementary Figures

In this section we provide several supplementary figures that facilitate deeper

understanding of the rich dynamics exhibited by the stellar spin during LK cy-

cles and migration.

As stated in the main text, the division between different regimes of stel-

lar spin behavior depends on the planet semi-major axis, binary semi-major

axis, and the product of planet mass and stellar spin frequency. In Fig. 2.7,

we illustrate these divisions in the ab − a space for several different values of

M̂p ≡ (Ω̂?/0.05)(Mp/MJ). We note that for real systems, short-range effects due

to General Relativity (GR) and tidal/rotation distortion of the planet may af-

fect the LK cycles. For the parameter space explored in this paper, the GR

effect dominates. When the LK precession frequency ω̇k ∼ t−1
k (1 − e2)3/2 be-

comes comparable to the GR-induced precession frequency ω̇GR, the LK cycle
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is arrested. In this case, the maximum eccentricity achieved during an LK cy-

cle is reduced, and any planet undergoing LK cycles in will fail to become a

hot Jupiter if rp = a(1 − emax) is larger than ∼ 0.1 AU. Thus, the effect of GR

can restrict the available parameter space in which adiabatic evolution (regime

III) happens and a hot Jupiter is created. However, the presence of short-range

forces and tidal dissipation also alters the topology of the chaos in the param-

eter space, making it difficult to draw a direct connection between the regime

divisions in the “pure” LK system and the results of our dissipative simulations.

In fact, the results of Fig. 2.5 (left) demonstrate that, indeed, it is possible for hot

Jupiters to experience adiabatic evolution.

In order to explore the three regimes of stellar spin evolution, we create sur-

faces of section (Fig. 2.2) by sampling the spin trajectory every time the orbital

trajectory comes back to the same region of phase space. In Fig. 2.8 we show the

orbital trajectory in phase space, with and without short-range forces, and mark

the point at which we choose to sample the spin evolution.

In the main text, we demonstrate that in the “transadiabatic” regime (regime

II), stellar spin has the potential to undergo both chaotic motion and regular

quasiperiodic motion, depending on the parameters of the system. In Fig. 2.1

we present an example of a chaotic trajectory. Here, in Fig. 2.9 we present an

example of a periodic transadiabatic trajectory: even at late times, the “real”

and “shadow” trajectories match perfectly.

Finally, in Fig. 2.10 we present a sample time evolution for the LK problem

with added short-range forces, tidal dissipation and stellar spindown, show-

ing how the final semi-major axis af and spin-orbit misalignment angle θf
sl are

attained. Each point in Fig. 2.5 represents the result of such evolution.
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Figure 2.7: Breakdown of parameter space into the three regimes of spin evolu-
tion, as discussed in the text. Black: for a periastron distance of rp = a(1−emax) =

0.03 AU; gray: for rp = 0.05 AU. Here M̂p = (Ω̂?/0.05)(Mp/MJ). The regimes
are determined by the relative values of the stellar spin precession frequency
Ωps and the nodal precession frequency Ωpl of the planet’s orbit. Note that
Ωps depends on cos θsl, and for concreteness we use cos θsl = 1. Ωpl is a com-
plicated function of eccentricity and θlb (Eq. 2.2), which we approximate as
Ωpl ≈ −t−1

k /(1 − e2) in making this figure. The lines separating Regimes I and
II are given by |Ωps,max| ≈ 0.5|Ωpl,max|, where Ωps,max and Ωpl,max are equal to Ωps

and Ωpl evaluated at (1− emax) = rp/a. The line separating Regimes II and III is
given by |Ωps,0| ≈ 2|Ωpl,0|, where Ωps,0, Ωpl,0 are equal to Ωps and Ωpl evaluated at
e = 0. The dotted lines mark the boundary at which the effect of GR becomes
significant, approximated by ω̇GR ≈ t−1

k (1 − e2
max)−1/2. Above the dotted lines,

GR will suppress the LK cycles, so that the system cannot reach the specified rp.
In Regimes I and III the spin precession frequency never overlaps with the nodal
precession frequency, and the spin evolution is expected to be regular and peri-
odic. In Regime II, the two frequencies are equal for some value of e during the
LK cycle, and therefore secular spin-orbit resonance develops, potentially lead-
ing to chaos. Note that the parameters shown in the lowest panel (M̂p = 300)
correspond to a low-mass star rather than a planet.
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Figure 2.8: Orbital trajectory in e − ω phase space, for the “pure” LK problem
(left), and with the addition of short-range forces (right). ω circulates with a pe-
riod that is twice the period of the eccentricity oscillations. In red, we mark the
point in the trajectory where we choose to sample the spin evolution in gener-
ating Figs. 2.2 and 2.4: i.e., every time the trajectory passes that point, we record
the stellar spin orientation.

2.8.3 Toy Model

We consider a toy model in order to gain a better understanding of the dynam-

ical behavior of the “real” LK system with stellar spin evolution (i.e. the system

on which we focused in the main text). In this model, the stellar spin axis Ŝ

satisfies Eq. (2.6), and the orbital axis L̂ evolves according to

dL̂

dt
= ΩplL̂b × L̂, (2.14)

where we have neglected the back-reaction torque of the stellar spin on the plan-

etary orbit (this back-reaction can be included but it does not introduce quali-

tatively new features when L � S), and the nutation of the orbital angular

momentum vector L̂. The external binary axis L̂b is fixed in time, and the an-

gle between L̂ and L̂b is constant. The spin precession rate Ωps is a function of

eccentricity (and time) [see Eq. (2.4)]. In the case of pure LK oscillations (i.e.
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Figure 2.9: Sample evolution curves for a trajectory in a periodic island of
regime II, demonstrating how the stellar spin evolves through many LK cycles.
We plot a “real” trajectory (red solid lines) and a “shadow” trajectory (orange
dashed lines), used to evaluate the degree of chaotic behavior. The trajectories
are initialized such that the “real” starts with Ŝ parallel to L̂, and the “shadow”
with Ŝ misaligned by 10−6deg with respect to L̂. The parameters are a = 1AU,
ab = 200AU, e0 = 0.01, θ0

lb = 85◦, Ω̂? = 0.03, Mp = 1.025MJ . This figure cor-
responds to the red points of Fig. 2.2 (bottom left) and the red curve of Fig. 2.3
(left). It is perfectly periodic: even at late times, the “real” and “shadow” trajec-
tories match perfectly.

without extra precession effects), the eccentricity is a periodic function of time,

varying between 0 and emax. We imitate this oscillatory behavior by adopting

the following explicit form for Ωps:

Ωps(t) = Ωps,0f(t) cos θsl, with f(t) ≡ 1 + ε

1 + ε cos Ω0t
, (2.15)

where Ω0 represents the LK oscillation frequency. The precession frequency of L̂

around L̂b has the approximate eccentricity dependence Ωpl ∝ [2(1− e2)−1 − 1]
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Figure 2.10: Sample orbital and spin evolution, including tidal dissipation and
stellar spindown. The parameters for this run are a0 = 1AU, ab = 200AU,
e0 = 0.01, θ0

lb = 85◦, Ω̂?,0 = 0.05, Mp = 5MJ , χ = 700.

in the real system, and therefore in our toy model takes the form

Ωpl = Ωpl,0(2f 2/3 − 1), where Ωpl,0 =
3

4
Ω0 cos θlb. (2.16)

During a LK cycle, Ωps varies from Ωps,0 cos θsl to Ωps,max = Ωps,0(1+ε) cos θsl/(1−

ε). We adopt ε = 0.99 in our examples below. Thus, the parameter ωps,0 ≡

Ωps,0/Ωpl,0 determines whether the system is nonadiabatic (ωps,0 . 0.1), transa-

diabatic (0.1 . ωps,0 . 1), or fully adiabatic (ωps,0 & 1).
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For a given Ωps,0, we numerically integrate Eqs. (2.6) and (2.14) for 1000

“LK cycles,” record the values of θsl and θsb at eccentricity maxima (i.e., Ω0t =

π, 3π, 5π, · · · ), and then plot these values in the θsl−ωps,0 and θsb−ωps,0 planes. We

repeat the process for different values of ωps,0. The results are shown in Fig. 2.11

for initial θlb = 60◦ (and initial θsl = 0◦). The range of ωps,0 has been chosen to

illustrate the nonadiabatic, transadiabatic and fully adiabatic regimes.

As in the real system, our toy model exhibits periodic/quasiperiodic solu-

tions and chaotic zones, and the level of chaos is determined by the parameter

ωps,0. If we use the spreads of θsl and θsb as a measure of chaos, we see that the

system generally becomes more chaotic with increasing ωps,0, until ωps,0 reaches

∼ 5, beyond which the system becomes fully-adiabatic (θsl → 0 and θsb ap-

proaches a constant). However, multiple periodic islands exist in the ocean of

chaos. Figure 2.12 illustrates the time evolution of θsl and θsb in several of these

periodic islands, along with an example of chaotic evolution. Figure 2.13 com-

pares δ(t) = |Ŝreal(t)− Ŝshadow(t)| (where the shadow trajectory has an initial

condition nearly identical to the real one) for the different cases, clearly show-

ing the difference between the periodic islands and chaotic evolution.
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Figure 2.11: Angles θsl and θsb evaluated at maximum eccentricity (where
Ω0t = π, 3π, 5π... for 1000 cycles) as functions of ωps,0 ≡ Ωps,0/Ωpl,0. The initial
angle between L̂ and L̂b is θ0

lb = 60◦, and Ŝ and L̂ are initially aligned. The range
of ωps,0 (on the logarithmic scale) in the right panels is chosen to illustrate the
behavior of the three regimes (nonadiabatic, transadiabatic, and fully adiabatic).
The narrow range of ωps,0 (on the linear scale) in the left panels exhibits the ex-
istence of periodic and quasiperiodic islands within the (chaotic) transadiabatic
zones.
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Figure 2.12: Angles θsl and θsb as functions of time, demonstrating the var-
ious behaviors of different orbits shown in Figure 2.11, including the three
distinct regimes, and the difference between periodic and chaotic evolution
in the transadiabatic regime. Time is in units of Ω0 = 1 (Eq. 2.15), and has
been scaled by π. The dashed lines, included for reference, are located at
odd-integers (when the system is at maximum eccentricity). Upper left panel:
ωps,0 ≡ Ωps,0/Ωpl,0 = 0.023, nonadiabatic, so that θsb ≈ constant. Upper right
panel: ωps,0 = 13.3, fully adiabatic, so that θsl ≈ θ0

sl ≈ 0. Middle left panel:
ωps,0 = 0.89, transadiabatic but periodic, with period= 12π. Middle right panel:
ωps,0 = 1.25, transadiabatic but periodic, with period= 16π. Bottom left panel:
ωps,0 = 2.13, transadiabatic but periodic, with period= 2π. Bottom right panel:
ωps,0 = 2.35, transadiabatic, with no discernible periodic behavior, chosen to
illustrate chaotic evolution. See also Fig. 2.13 for further comparison between
periodic and chaotic evolution.
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Figure 2.13: Difference (δ) in the spin vector Ŝ between “real” and “shadow”
trajectories for the four transadiabatic systems shown in Fig. 2.12 (bottom 4 pan-
els), starting with an initial δ0 = 10−8. Time is in units of Ω0 = 1. Three exam-
ples of periodic evolution are shown, where ωps,0 ≡ Ωps,0/Ωpl,0 = 0.89 (blue),
ωps,0 = 1.25 (green), ωps,0 = 2.13 (red), as well as a chaotic example ωps,0 = 2.35
(purple). Compare with Figure 2.12. For the periodic examples δ remains small,
while in the chaotic example, δ increases exponentially, and eventually saturates
to its maximum value of δ = 2.
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CHAPTER 3

CHAOTIC DYNAMICS OF STELLAR SPIN DRIVEN BY PLANETS

UNDERGOING LIDOV-KOZAI OSCILLATIONS: RESONANCES AND

ORIGIN OF CHAOS

3.1 Abstract

Many exoplanetary systems containing hot Jupiters (HJs) are found to possess

significant misalignment between the spin axis of the host star and the planet’s

orbital angular momentum axis. A possible channel for producing such mis-

aligned HJs involves Lidov-Kozai oscillations of the planet’s orbital eccentric-

ity and inclination driven by a distant binary companion. We have recently

shown (Storch et al., 2014) that a proto-HJ undergoing Lidov-Kozai oscillations

can induce chaotic evolution of the spin axis of its host star. Here we explore

the origin of the chaotic spin behavior and its various features in a simplified

system where the secular oscillations of the planet’s orbit are strictly periodic.

Using Hamiltonian perturbation theory, we identify a set of secular spin-orbit

resonances in the system, and show that resonance overlaps are responsible for

the onset of wide-spread chaos in the evolution of stellar spin axis. The degree

of chaos in the system depends on the adiabaticity parameter ε, proportional to

the ratio of the Lidov-Kozai nodal precession rate and the stellar spin precession

rate, and thus depends on the planet mass, semi-major axis and the stellar rota-

tion rate. For systems with zero initial spin-orbit misalignment, our theory suc-

cessfully explains the occurrence (as a function of ε) of large-scale chaotic vari-

The contents of this chapter were published in MNRAS as "Chaotic Dynamics of Stellar
Spin Driven by Planets Undergoing Lidov-Kozai Oscillations: Resonances and Origin of Chaos"
(Storch and Lai, 2015b)
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ation, as well as regions of restricted chaos and quasi-periodic bands. Finally,

we discuss a novel “adiabatic resonance advection” phenomenon, in which the

spin-orbit misalignment, trapped in a resonance, gradually evolves as ε slowly

changes. This phenomenon can occur for certain parameter regimes when tidal

decay of the planetary orbit is included.

3.2 Introduction

A major surprise in exoplanetary astrophysics in recent years is the discovery

of the misalignment between the orbital axis of the planet and the spin axis of

the host star in systems containing “hot Jupiters”, giant planets with orbital pe-

riods <∼ 5 days (Albrecht et al., 2012; Hébrard et al., 2008, 2010; Narita et al.,

2009; Triaud et al., 2010; Winn et al., 2009). These planets cannot form in-situ,

and must have migrated from a few AU’s distance from their host star to their

current locations. Planet migration in protoplanetary disks is usually expected

to produce aligned orbital and spin axes [however, see Bate et al. (2010); Baty-

gin (2012); Batygin and Adams (2013); Lai (2014); Lai et al. (2011); Spalding and

Batygin (2014)]. So the observed misalignments suggest that dynamical interac-

tion between planets and/or companion star may play an important role in the

planet’s inward migration.

One of the dynamical channels for the migration of giant planets involves

Lidov-Kozai oscillations (Kozai, 1962; Lidov, 1962) of the planet’s orbit induced

by a distant companion (star or planet). When the companion’s orbit is suffi-

ciently inclined relative to the planetary orbit, the planet’s eccentricity under-

goes excursions to large values while the orbital axis precesses with varying
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inclination. Tidal dissipation in the planet at periastron reduces the orbital en-

ergy, leading to inward migration and circularization of the planet’s orbit (Cor-

reia et al., 2011; Fabrycky and Tremaine, 2007; Naoz et al., 2012; Petrovich, 2015b;

Wu and Murray, 2003). A number of recent works have focused on the extreme

evolution of the planetary orbit (such as orbital flip) when the octupole per-

turbing potential from the binary companion is included (Ford et al., 2000; Katz

et al., 2011; Li et al., 2014; Liu et al., 2015; Naoz et al., 2011, 2013; Petrovich,

2015b).

In a recent paper [Storch et al. (2014); hereafter SAL], we have shown that

during the Lidov-Kozai cycle, gravitational interaction between the planet and

its oblate host star can lead to complex and chaotic evolution of the stellar spin

axis, depending on the planet mass and the stellar rotation rate. In many cases,

the variation of the stellar spin direction is much larger than the variation of the

planet’s orbital axis. Moreover, in the presence of tidal dissipation, the complex

spin evolution can leave an imprint on the final spin-orbit misalignment angle.

SAL discussed three qualitatively different regimes for the evolution of the

spin-orbit misalignment angle θsl. These regimes depend on the ratio of the

precession rate Ωpl of the planetary orbital axis (L̂) around the (fixed) binary

axis L̂b, and the stellar precession rate Ωps driven by the planet (see Section 3.3):

(i) For |Ωpl| � |Ωps| (“nonadiabatic” regime), the spin axis Ŝ effectively pre-

cesses around L̂b, maintaining a constant angle θsb between Ŝ and L̂b. (ii) For

|Ωps| � |Ωpl| (“adiabatic” regime), the spin axis Ŝ follows L̂ adiabatically as the

latter evolves, maintaining an approximately constant θsl. (iii) For |Ωps| ∼ |Ωpl|

(“trans-adiabatic” regime), the evolution of Ŝ is chaotic. However, the precise

transitions between these regimes have not yet been explored in detail.
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Since both Ωps and Ωpl depend on eccentricity (Ωps also depends on θsl) and

thus vary strongly during the Lidov-Kozai cycle, a useful dimensionless ratio

that characterizes the evolution of Ŝ is the “adiabaticity parameter”,

ε =

∣∣∣∣Ωpl

Ωps

∣∣∣∣
e,θsl=0

, (3.1)

where the subscript implies that the quantity is evaluated at e = 0 and θsl = 0.

So ε is constant during the Lidov-Kozai cycle. For a planet of mass Mp initially

in a nearly circular orbit around a star of mass M? and radius R? at a semimajor

axis a, with a binary companion of mass Mb, semimajor axis ab (and eccentricity

eb = 0), the adiabaticity parameter is given by

ε = 1.17

(
k?
2kq

)(
R?

1R�

)−3/2
(

Ω̂?

0.1

)−1(
Mb

103Mp

)
×

×
( a

1 AU

)9/2( ab
300 AU

)−3∣∣cos θ0
lb

∣∣ , (3.2)

where Ω? = (GM?/R
3
?)

1/2Ω̂? is the rotation rate of the star, k?/(2kq) ∼ 1, and θ0
lb

is the initial (at e = 0) planetary orbital inclination relative to the binary. Fig-

ure 3.1 shows a “bifurcation” diagram that illustrates the complex dynamics of

the spin-orbit misalignment angle θsb as ε is varied (by changingMp while keep-

ing other parameters fixed). We see that in this example, wide-spread chaos

occurs for ε >∼ 0.14, while the evolution of θsl is largely regular for ε <∼ 0.14.

However, in the chaotic regime, there exist multiple periodic islands in which

θsl evolves regularly. Interestingly, even in the “adiabatic” regime, there exist

regions of “restricted chaos”, in which θsl evolves chaotically but within a re-

stricted range* .

Widespread chaos in dynamical systems can be understood as arising from

*Note that, displayed in this way, it is not entirely certain that a given region of apparently
“regular” behavior (i.e. not evincing obvious chaotic spread) is indeed quasi-periodic. Rather,
it is possible that such a region is still chaotic but tightly isolated. Thus, Fig. 3.1 should be
considered suggestive.

37



2 4 6 8 10 12 14
0

50

100

150

2 1 0.5 0.2 0.15 0.1 0.08

Mp !MJ"

Θ
sl
!d
eg
re
es
"

Ε

Figure 3.1: “Bifurcation” diagram of the spin-orbit misalignment angle ver-
sus planet mass and the adiabaticity parameter ε. For each planet mass
Mp, we evolve the secular orbital evolution equations including the effects of
short-range forces (periastron advances due to General Relativity, the stellar
quadrupole, and the planet’s rotational bulge and tidal distortion) together with
the stellar spin precession equation, starting with θsl = 0, for ∼ 1500 Lidov-
Kozai cycles, and record θsl every time the orbital eccentricity reaches a max-
imum. The parameters for this plot are a = 1 AU, ab = 200 AU, e0 = 0.01,
θ0

lb = 85◦, Ω̂? = 0.03. This figure is an extended version of Fig. 4 of Storch et al.
(2014), demonstrating the complexity of the trans-adiabatic and even the adia-
batic regimes of the spin dynamics.

overlaps of resonances in the phase space (Chirikov, 1979). What are the reso-

nances underlying the chaotic spin behaviour found in SAL and Fig. 3.1? Since

Ωpl and Ωps are both strong functions of time, the answer to this question is

not obvious a priori, even in the ideal case when the planetary orbit undergoes

strictly periodic Lidov-Kozai oscillations. Using Hamiltonian perturbation the-

ory, we show in this paper that a spin-orbit resonance occurs when the time-

averaged spin precession frequency equals an integer multiple of the Lidov-

Kozai oscillation frequency. We then demonstrate that overlapping resonances
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can indeed explain the onset of chaos in the dynamics of stellar spin, more

specifically the “adiabatic” to “trans-adiabatic” transition. We also show that

many of the limited chaotic excursions found numerically in the “adiabatic”

regime can be understood from overlapping resonances. Finally we show that

the consideration of resonances can lead to a novel “adiabatic resonance advec-

tion” phenomenon when tidal decay of the planetary orbit is included.

The chaotic dynamics of stellar spin studied in this paper has some resem-

blance to the well-known problem of obliquity dynamics of Mars and other

terrestrial planets (Laskar and Robutel, 1993; Li and Batygin, 2014; Touma and

Wisdom, 1993). In that problem, a spin-orbit resonance arises when the spin

precession frequency Ωps of Mars around its orbital axis L̂ driven by the Sun

matches one of the eigen-frequencies (Ωpl’s) for the variation of L̂ due to inter-

actions with other planets. Only a small number of Ωpl’s are relevant in the

Solar System, and except for the cos θsl factor, Ωps is approximately constant in

time. Thus the analysis of overlapping resonances is relatively straightforward.

For the problem studied in this paper, by contrast, both (Ωps/ cos θsl) and Ωpl are

strong functions of time, so the dynamics of the stellar spin axis exhibits a much

richer set of behaviors.

Our paper is organized as follows. In Section 3.3, we review the physical

system and its ingredients. In Section 3.4, we develop a Hamiltonian formula-

tion of the problem, and derive the resonance condition for spin-orbit coupling.

In Section 3.5, we discuss the behaviour of the system under the influence of a

single resonance. In Section 3.6, we demonstrate the onset of chaos in the pres-

ence of two or more overlapping resonances, and derive the overlap criterion.

In Section 3.7, we consider the full Lidov-Kozai driven spin precession prob-
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lem, and demonstrate that resonance overlaps can explain the onset of chaos, as

well as other “quasi-chaotic” features in the spin evolution. In Section 3.8, we

consider the effect of a slowly evolving adiabaticity parameter, as a simplified

model of tidal dissipation, and present a proof of concept for understanding the

novel “adiabatic resonance advection” phenomenon. We summarize our key

findings in Section 3.9.

3.3 Review of the Physical System and Ingredients

3.3.1 Lidov-Kozai (LK) Oscillations

We consider a planet of mass Mp in orbit around a host star of mass M? (with

M? � Mp), and a distant companion of mass Mb. The host star and companion

are in a static orbit with semi-major axis ab, eccentricity eb, and angular momen-

tum axis L̂b, which defines the invariant plane of the system. The planet’s orbit

has semi-major axis a, eccentricity e, angular momentum axis L̂ and inclina-

tion θlb (the angle between L̂ and L̂b). In the Lidov-Kozai (LK) mechanism, the

quadrupole potential of the companion causes the orbit of the planet to undergo

oscillations of both e and θlb, as well as nodal precession (Ω̇) and pericenter ad-

vance (ω̇), while conserving L · L̂b. The equations governing these oscillations
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are given by

de

dt
= t−1

k

15

8
e
√

1− e2 sin 2ω sin2 θlb, (3.3)

dΩ

dt
= t−1

k

3

4

cos θlb (5e2 cos2 ω − 4e2 − 1)√
1− e2

, (3.4)

dθlb

dt
= −t−1

k

15

16

e2 sin 2ω sin 2θlb√
1− e2

, (3.5)

dω

dt
= t−1

k

3
[
2(1− e2) + 5 sin2 ω(e2 − sin2 θlb)

]
4
√

1− e2
, (3.6)

where t−1
k is the characteristic frequency of oscillation, given by

t−1
k =

n

(1− e2
b)

3/2

(
Mb

M?

)(
a

ab

)3

, (3.7)

where n =
√
GM?/a3 is the planet’s mean motion. In this paper, we neglect all

effects associated with short-range forces (General Relativity, tidal interaction,

etc) and the octupole potential from the binary.

Equations (3.3)-(3.6) admit two types of analytical solutions, distinguished

by whether the argument of pericenter ω circulates or librates. In the present

work we will consider only the circulating case by taking ω = 0 at t = 0. (How-

ever, we note that so long as the initial eccentricity e0 is very small, the librating

case would yield virtually the same eccentricity function. Thus our results ap-

ply, in fact, to both librating and circulating cases.) The conservation of the

projected angular momentum L · L̂b gives

x cos2 θlb = x0 cos2 θ0
lb ≡ h, (3.8)

where

x ≡ 1− e2, (3.9)

and energy conservation gives

e2(5 sin2 θlb sin2 ω − 2) = −2e2
0. (3.10)
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For the initial eccentricity e0 ≈ 0, the above equations imply that the maximum

eccentricity occurs at ω = π/2, 3π/2, where sin2 θlb = 2/5 and

emax '
(

1− 5

3
cos2 θ0

lb

)1/2

. (3.11)

Combining eqs. (3.8)-(3.10) with eq. (3.3), the time evolution of eccentricity

can be solved explicitly (Kinoshita and Nakai, 1999):

x = x0 + (x1 − x0)cn2(θ, k2), (3.12)

where

θ =
K

π
(net+ π) , (3.13)

ne = t−1
k

6π
√

6

8K

√
x2 − x1, (3.14)

k2 =
x0 − x1

x2 − x1

. (3.15)

In the above expressions cn(θ, k2) is the Jacobi elliptic cn function with modulus

k2, ne is the “mean motion” for the eccentricity variation (i.e. 2π/ne is the period

of the eccentricity oscillations), K is the complete elliptic integral of the first

kind with modulus k2, x0 is the value of x at t = 0, and x1 and x2 (x1 < x2) are

solutions to the quadratic equation

x2
1,2 −

1

3
(5 + 5h− 2x0)x1,2 +

5

3
h = 0, (3.16)

obtained from eqs. (3.8)-(3.10) with sin2 ω = 1. The other orbital elements can be

expressed as a function of x. Note that the period of ω circulation (ω goes from

0 to 2π) is 4π/ne.

For the remainder of this work, we use a single x(t) solution in our analysis,

corresponding to e0 = 0.01 (so x0 = 1 − (0.01)2) and θ0
lb = 85◦. By selecting this

very high initial inclination, we effectively maximize the degree of chaos in the

system.
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3.3.2 Stellar spin precession

Because of the rotation-induced oblateness, the star is torqued by the planet,

causing its spin axis Ŝ to precess around the planet’s orbital axis L̂ according to

the equation
dŜ

dt
= ΩpsL̂× Ŝ, (3.17)

where the precession frequency Ωps is given by

Ωps = −3GMp(I3 − I1)

2a3(1− e2)3/2

cos θsl

S
. (3.18)

Here I3 and I1 are the principal moments of inertia of the star, S is the magnitude

of the spin angular momentum, and θsl is the angle between Ŝ and L̂. Our

goal is to characterize how θsl changes as a function of time as the planet’s orbit

undergoes LK oscillations. Since e changes during the LK cycle, we write the

spin precession frequency as

Ωps(t) ≡ −α(t) cos θsl = − α0

x3/2
cos θsl, (3.19)

where

α0 =
3GMp(I3 − I1)

2a3I3Ω?

= 1.19× 10−8

(
2π

1yr

)(
2kq
k?

)(
103Mp

M?

)(
Ω̂?

0.05

)
×

×
( a

1AU

)−3
(
M?

M�

)1/2(
R?

R�

)3/2

. (3.20)

Here we have used (I3 − I1) ≡ kqM?R
2
?Ω̂

2
?, with Ω̂? = Ω?/(GM?/R

3
?)

1/2 the di-

mensionless stellar rotation rate, and S = I3Ωs ≡ k?M?R
2
?Ω?. For a solar-type

star, kq ≈ 0.05, and k? ≈ 0.1 (Claret and Gimenez, 1992).

During the LK cycle, the planet’s orbital axis L̂ changes in two distinct ways:

nodal precession around L̂b at the rate Ωpl(t) = Ω̇, and nutation at the rate θ̇lb(t).
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Each of these acts as a driving force for the stellar spin. The variation of θlb(t)

plays an important role as well since it affects L̂(t) directly [see Eq. (3.30) below].

Note that the back-reaction torque from the stellar quadrupole on the orbit also

acts to make L̂ precess around Ŝ; we neglect this back-reaction throughout this

paper in order to focus on the spin dynamics with “pure” orbital LK cycles.

Based on the analytical LK solution given in the previous sub-section, we find

Ωpl is given by

Ωpl = Ω̇ = Ωpl,0

[
1− 2(x0 − h)

x− h

]
, (3.21)

with x is given by Eq. (3.12) and

Ωpl,0 =
3

4tk

√
h ' 3

4tk

∣∣cos θ0
lb

∣∣ , (3.22)

where the second equality assumes e0 ' 0. The angle θlb and its derivative are

given by cos θlb =
√
h/x and θ̇lb = ẋ cos θlb/(2x sin θlb). Note that Ωpl(t) < 0. The

quantity Ωpl,0 specifies the value of |Ωpl| at e = e0 ' 0, and is explicitly given by

Ωpl,0 '
3

4

(
2π

106yr

)(
Mb

M?

)(
M?

M�

)1/2 ( a

1AU

)3/2

×

×
( ab

100AU

)−3 |cos θ0
lb|

(1− e2
b)

3/2
, (3.23)

for x0 = 1− e2
0 ' 1. Taking the ratio of this and Eq. (3.20) yields the adiabaticity

parameter

ε =
Ωpl,0

α0

, (3.24)

as given in Section 3.2 [see Eq. (3.2)].
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3.4 Hamiltonian Formulation of Spin Dynamics and Reso-

nances

3.4.1 The Spin Hamiltonian

In the inertial frame, the Hamiltonian governing the dynamics of stellar spin

S = SŜ is

H =
S2

2I3

+
GMp(I3 − I1)

4a3(1− e2)3/2

[
1− 3(Ŝ · L̂)2

]
. (3.25)

The first term is the (constant) rotational kinetic energy and will be dropped

henceforth, and the second term is the orbital-averaged interaction energy be-

tween the planet and stellar quadrupole. Since the evolution of the orbital ec-

centricity e(t) is fixed, we only need to consider the last term in Eq. (3.25):

H0 ≡ −
1

2
α(t)S

(
Ŝ · L̂

)2

. (3.26)

Noting that Ŝ · L̂b and φs (the precessional phase of Ŝ around L̂b) are conjugate

variables, we can check that the Hamiltonian equations for H0 lead to Eq. (3.17).

Since we are interested in the variation of θsl, it is convenient to work in the

rotating frame in which L̂ is a constant. In this frame, the Hamiltonian takes the

form (Kinoshita, 1993)

Hrot = H −R · S, (3.27)

where the rotation “matrix” is

R = ΩplL̂b + θ̇lb

(
L̂b × L̂

sin θlb

)
. (3.28)

To write down the explicit expression for Hrot, we set up a Cartesian coordinate

system with the z-axis along L̂, and the x-axis pointing to the ascending node
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Figure 3.2: Plots of the “shape” functions β(τ) (blue), γ(τ) (red), and ψ(τ)
(brown), for x0 = 1− 0.012 and cos θ0

lb = 85◦.

of the planet’s orbit in the invariant plane (the plane perpendicular to L̂b). The

spin axis is characterized by θsl and the precessional phase φ (the longitude of

the node of the star’s rotational equator in the xy-plane), such that

Ŝ = sin θsl (sinφ x̂− cosφ ŷ) + cos θsl ẑ. (3.29)

Setting S = 1 and suppressing the subscript “rot”, we have

H = −1

2
α(t) (cos θsl)

2 − θ̇lb(t) sin θsl sinφ

−Ωpl(t)
[
cos θlb(t) cos θsl − sin θlb(t) sin θsl cosφ

]
, (3.30)

Note that φ and cos θsl are the conjugate pair of variables we wish to solve for.

Since in this work we focus on the behavior of the system close to the adiabatic

regime, in general the first term in the Hamiltonian dominates, while the others

can be treated as perturbations. In the limit of no perturbation, the zeroth order

Hamiltonian H0 ≡ −1
2
α(t) cos2 θsl indeed conserves cos θsl, as it should based on

the arguments given in Section 3.2.
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3.4.2 The Rescaled Hamiltonian

The equations of motion for φ and cos θsl can be derived from the Hamiltonian

(3.30), and are given by

dφ

dt
= −α(t) cos θsl + θ̇lb(t)

cos θsl

sin θsl

sinφ

−Ωpl(t)

[
cos θlb(t) + sin θlb(t)

cos θsl

sin θsl

cosφ

]
, (3.31)

d cos θsl

dt
= Ωpl(t) sin θlb(t) sin θsl sinφ

+θ̇lb(t) sin θsl cosφ. (3.32)

These equations can be simplified by introducing a rescaled time variable τ such

that dτ ∝ α(t)dt, i.e.,

τ(t) =
ne
ᾱ

∫ t

0

α(t′)dt′, (3.33)

where

ᾱ ≡ ne
2π

∫ 2π/ne

0

α(t)dt. (3.34)

Here the factor of ne/ᾱ is used to ensure that all of the time-dependent forcing

functions introduced in Section 3.3 have a period of 2π in τ -space, for conve-

nience. The equations of motion in τ space are then given by

dφ

dτ
=

ᾱ

ne

{
− cos θsl +

θ̇lb(τ)

α(τ)

cos θsl

sin θsl

sinφ

− Ωpl(τ)

α(τ)

[
cos θlb(τ) + sin θlb(τ)

cos θsl

sin θsl

cosφ
]}
, (3.35)

d cos θsl

dτ
=

ᾱ

ne

{
Ωpl(τ)

α(τ)
sin θlb(τ) sin θsl sinφ

+
θ̇lb(τ)

α(τ)
sin θsl cosφ

}
. (3.36)
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The corresponding Hamiltonian is (Colombo, 1966; Henrard and Murigande,

1987)

H ′(p, φ, τ) =
ᾱ

ne

{
−1

2
p2 + εψ(τ) p

− ε
√

1− p2
[
β(τ) cosφ+ γ(τ) sinφ

]}
, (3.37)

where we have defined p ≡ cos θsl, and

εβ(τ) = −Ωpl(τ)

α(τ)
sin θlb(τ), (3.38)

εγ(τ) =
θ̇lb(τ)

α(τ)
, (3.39)

εψ(τ) = −Ωpl(τ)

α(τ)
cos θlb(τ). (3.40)

Since ε = Ωpl,0/α0 [see Eq. (3.24)], the functions β(τ), γ(τ) and ψ(τ) depend only

on the “shape” of the orbit, i.e., on e(τ) (with τ varying from 0 to 2π). For a

given θ0
lb (and e0 ' 0), these functions are fixed and do not depend on any other

parameters. Figure 3.2 depicts these functions for θ0
lb = 85◦.

3.4.3 Fourier Decomposition and Resonances

We now expand β(τ), γ(τ), and ψ(τ) in Fourier series. Since β and ψ are sym-

metric with respect to τ = π, while γ is anti-symmetric (see Fig. 3.2), we have

β(τ) =
∞∑

M=0

βM cosMτ, (3.41)

γ(τ) =
∞∑

M=1

γM sinMτ, (3.42)

ψ(τ) =
∞∑

M=0

ψM cosMτ. (3.43)
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Obviously, βM , γM and ψM depend only on the “shape” of the orbit e(τ). The

Hamiltonian (3.37) becomes

H ′ =
ᾱ

ne

{
−1

2
p2 + ε ψ0 p+ ε p

∞∑
M=1

ψM cosMt

− ε

2

√
1− p2

∞∑
M=0

[
(βM + γM) cos(φ−Mτ)

+(βM − γM) cos(φ+Mτ)
]}
. (3.44)

Note that γ0 is not defined in Eq. (3.42). For convenience of notation, we will set

γ0 = β0 [see discussion following Eq. (3.52)].

A resonance occurs when the argument of the cosine function, (φ ±Mτ), in

the Hamiltonian (3.44) is slowly varying, i.e., when dφ/dτ = N , where N is a

positive or negative integer. In the perturbative regime (ε � 1) of interest in

this paper, the Hamiltonian is dominated by H0 = (ᾱ/ne)(−p2/2), and we have

dφ/dτ ' −ᾱp/ne. So the resonance condition becomes

Ω̄ps = −ᾱ cos θsl = Nne, with N = 0,±1,±2,±3, · · · (3.45)
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tial conditions (corresponding to unique values of E) and evolving the equations
of motion derived from the Hamiltonian. The blue line shows the analytical pre-
diction for the separatrix. The adiabaticity parameter is ε = 0.1, i.e. α0 = 10Ωpl,0.

i.e. the averaged stellar precession frequency Ω̄ps equals an integer multiple

of the mean eccentricity oscillation frequency in the LK cycle. Note that, since

cos θsl spans the range {−1, 1}, this means that for any given value of ᾱ and of ne

there exist multiple resonances. We may then define the zeroth-order resonant

momentum corresponding to each resonance as

pN = (cos θsl)N = −Nne
ᾱ

. (3.46)

Since |pN | cannot exceed 1, we also see that there exists a “maximum resonance

order”,

Nmax =

⌊
ᾱ

ne

⌋
=

⌊
1

ε
N
(
cos θ0

lb; e0

)⌋
, (3.47)

such that N = Nmax is the maximum allowed prograde (“positive”) resonance,

and N = −Nmax is the maximum allowed retrograde (“negative”) resonance.

Note that the resonant momentum pN can be written as

pN ' −
N

Nmax

. (3.48)
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Thus, the stellar spin evolution is perturbed by a set of (2Nmax + 1) resonances.

The functionN depends mainly on cos θ0
lb, and weakly on e0 (assuming e0 � 1).

For θ0
lb = 85◦ (adopted for our numerical examples in this paper), we find N =

0.98.

The N = −Nmax resonance is of particular interest, as it is the closest res-

onance to pN = 1, the aligned configuration. Thus, if a star-planet system is

born with the stellar spin axis and the planet orbital axis aligned, this resonance

is the one that most directly influences the stellar spin evolution. This will be

discussed in detail in Section 3.7.

We may now ask what happens if the resonance condition is satisfied: how

are the dynamics of stellar spin precession affected by one - or more - reso-

nances? To make the solution tractable analytically, we must make some sim-

plifying assumptions. We assume ε is small, i.e. the system is in or close to the

adiabatic regime. As a corollary, we assume that individual resonances do not

affect each other significantly, i.e., that we may analyze the resonances one at a

time rather than consider the coupling between them.

3.5 Dynamics of a Single Resonance

To examine the dynamics of a particular single resonance (labeled by N , which

can be either positive or negative, corresponding to prograde or retrograde res-

onances, respectively), it is useful to transform the Hamiltonian into the frame

of reference in which that resonance is stationary. To this end, we perform a

canonical transformation to the new coordinates (φ̄, p̄) such that φ̄ = φ − Nτ .
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Figure 3.5: Comparison of the exact resonance locations (upper panel) and
widths (bottom panel) obtained by solving Eq. (3.52) (filled circles) with simple
analytical estimates (open circles). Three different values of ε are considered:
ε = 0.1 (blue points), ε = 0.05 (red points), and ε = 0.02 (green points). The
agreement between the exact calculation and simple estimates is quite good,
and gets better with smaller ε.

Using the generating function F2 = (φ−Nτ)p̄, we then find

p̄ = p, φ̄ = φ−Nτ, (3.49)

H̄ ′ = H ′
[
φ(φ̄), p(p̄); τ

]
−Np̄. (3.50)

Thus the transformed Hamiltonian is

H̄ ′ =
ᾱ

ne

{
−1

2
p2 − ne

ᾱ
Np+ ε p

∞∑
M=0

ψM cosMτ

− ε
2

√
1− p2

∞∑
M=0

[
(βM + γM) cos

[
φ̄− (M −N)τ

]
+(βM − γM) cos

[
φ̄+ (M +N)τ

]]}
, (3.51)

where we have dropped the bar over p, since p̄ = p. Under the assumption that
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Figure 3.6: Sample separatrices for resonances of different N ’s, for ε = 0.1 (top)
and ε = 0.05 (bottom). The top panel has Nmax = 9, and the bottom panel has
Nmax = 19.

resonances do not overlap, all but one harmonic can be averaged over, allowing

us to examine the dynamics of a single resonance. In this case, only the M = 0

term in the first sum, the M = N term (when N > 0) in the second sum, and/or

the M = −N term (when N < 0) in the third sum survive, and all the variables

take on an averaged meaning. We then have

H̄N =
ᾱ

ne

[
−1

2
p2 − ne

ᾱ
Np

+ε ψ0 p−
ε

2

√
1− p2 (βN + γN) cos φ̄

]
, (3.52)

where we have used β−N = βN and γ−N = −γN . In order to ensure that this

expression is valid for all N ’s (including N = 0), we set γ0 = β0.
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Figure 3.7: Surfaces of section for two different pairs of resonances. Top panel :
N = 1, M = −1. Bottom panel : N = 5, M = −5. The adiabaticity parameter is
ε = 0.1. The red and blue curves in each panel show the analytically computed
separatrices for each of the resonances, using the method of Section 3.5 (i.e. each
resonance is analyzed separately).

The Hamiltonian (3.52) shows that the sum of Fourier coefficients (βN + γN)

plays a key role in determining the property of theN -resonance. Figure 3.3 plots

(βN + γN) versus N , showing that it oscillates from positive to negative in a

ringdown fashion. This oscillatory behaviour arises from individual ringdowns

in βN and γN , as well as from interference between the βN and γN terms.
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Since the Hamiltonian (3.52) is not explicitly dependent on time, energy con-

servation holds, i.e.

H̄N(φ̄, p) = H̄N(φ̄0, p0) ≡ E, (3.53)

for a trajectory that starts at (φ̄0, p0). This equation is quartic which can be solved

for p(φ̄;E). Figure 3.4 shows the constant-energy curves in the phase space for

N = 0, illustrating the major features of the solution. The trajectories come in

two distinct flavors: those that circulate, i.e. cover the entire range of φ̄ and do

not cross p = pN [see Eq. (3.46)], and those that librate, i.e. are confined to some

limited range of φ̄. The center of the librating island is the true location of the

resonance, which is a stable fixed point of the equations of motion. Separating

the librating and circulating regions of the phase space is a homoclinic curve

known as the separatrix, which connects two saddle fixed points. The width of

the separatrix (in the p axis) defines the width of the resonance.

To derive a simple expression for the resonance width, we may simplify the

Hamiltonian (3.52) further by expanding it around p = pN , where pN is the

zeroth-order resonant momentum given by Eq. (3.46). We take p = pN + δp,

assume the terms proportional to ε are already small, and expand Eq. (3.52) to

second order in δp:

H̄N '
ᾱ

ne

[
−1

2
δp2 − ε

2

√
1− p2

N (βN + γN) cos φ̄

]
, (3.54)

where constant terms (which do not depend on δp) have been dropped. Equa-

tion (3.54) is the Hamiltonian of a simple pendulum. The resonance width is

given by

wN ' 2

[
2 ε |βN + γN |

√
1− p2

N

]1/2

. (3.55)

Figure 3.5 shows a comparison of the exact locations of the resonances* (the
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Figure 3.8: Surfaces of section for two pairs of resonances put together, with
their respective analytically computed separatrices. Red: N = 5, M = −5; blue:
N = 6, M = −6. The adiabaticity parameter is ε = 0.1.
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Figure 3.9: Surfaces of section computed using the exact Hamiltonian (top
panels) and using the approximate Hamiltonian with only the {−Nmax, Nmax}
Fourier harmonics included in the forcing function (bottom panels). The panels
from left to right correspond to ε = 0.1, 0.05, 0.02. Note the agreement between
top and bottom panels becomes better with smaller values of ε.
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fixed points of Eq. 3.52) with the unperturbed value pN [see Eq. (3.46)], as well

as a comparison of the exact widths of the resonances with Eq. (3.55). We see

that the approximate Hamiltonian (3.54) reproduces the resonance properties of

the full Hamiltonian (3.52) accurately. Note that the resonance width depends

on the sum of fourier coefficients |βN + γN |, and since β is symmetric while γ is

antisymmetric with respect toN , the prograde and retrograde resonances do not

have the same widths. Furthermore, since (βN + γN) goes through zero several

times in the interval N ∈ {−100, 100}, the resonance width is non-monotonic as

a function of N .

Figure 3.6 shows several separatrices for resonances of different orders (i.e.

different Ns) obtained by solving the full Hamiltonian (3.52), for two different

values of ε. (Note we vary ε by varying α0 while keeping Ωpl,0 fixed; this means

that the “shape” functions are unchanged.) Figure 3.6 illustrates several differ-

ent features of the separatrices. First, decreasing ε tends to decrease the dis-

placement of individual resonances from p = 0. Each resonance is centered at

p ' pN ' −N/Nmax. Since the maximum order of resonance, Nmax (recall that no

resonance is possible for |N | > Nmax; see Section 3.4.3), is inversely proportional

to ε (Eq. 3.47), we have |pN | ∝ ε. Second, the general trend is that at smaller

ε all the resonances are narrower, though this is not precisely true because pN

also depends on ε [see Eq. (3.55)]. Finally, the position of the resonance in the

φ coordinate depends on the sign of (βN + γN): if (βN + γN) < 0, the resonance

is located at φ = π, and if (βN + γN) > 0 – at φ = 0. Since γ−N = −γN , this

usually implies that there are significant differences between resonances with

N > 0 and those with N < 0.

*Note that, in general, Eq. 3.52 admits several fixed points. Besides the resonance fixed point
p = pN , other fixed points exist at values of p very close to ±1. However, these fixed points do
not globally affect the system; their separatrices are very localized. The limited influence of one
such fixed point can be seen in Fig. 3.9 (left) for p ≈ 1.
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To summarize, given a particular value of the adiabaticity parameter ε,

the stellar spin is perturbed by a set of resonances dφ/dτ = N with N ∈

{−Nmax, Nmax}, where Nmax is given by Eq. (3.47). Each resonance governs the

stellar spin evolution in the vicinity of cos θsl = pN , with pN approximately given

by Eq. (3.46), and the width of the governed region approximately given by

Eq. (3.55). As ε decreases (the system becomes more adiabatic), Nmax increases,

|pN | ' |N |/Nmax (for a given N ) decreases (the resonance locations move closer

to p = 0), and the width of the resonance generally decreases. For a given ε, the

width of the resonance is a non-monotonic function of N because of its depen-

dence on (βN + γN).

3.6 Onset of Chaos: Two or More Resonances

We now consider a Hamiltonian of the form

H =
ᾱ

ne

{
−1

2
p2 + ε ψ0 p

− ε
2

√
1− p2

[
(βN + γN) cos(φ−Nτ)

+(βM + γM) cos(φ−Mτ)
]}
, (3.56)

where M and N are (positive or negative) integers. The system is driven by two

harmonics, each with its own resonant frequency. What will happen? If the res-

onances are distinct enough, meaning they affect motion in different parts of the

phase space, they can coexist peacefully. But supposing the resonances overlap

- meaning there exist initial conditions for which the motion in the phase space

is sensitive to both - what will the spin do? It does not know which resonance

to “obey”, and hence its motion goes chaotic. This is the essence of the Chirikov

criterion for the onset of wide-spread chaos (Chirikov, 1979; Lichtenberg and
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Lieberman, 1992). We note, however, that this criterion is, in fact, too strict, and

chaotic motion begins somewhat before the overlap of the resonances, due to

secondary resonances that arise due to the (neglected in our analysis) coupling

between primary resonances.

Figure 3.7 illustrates the onset of chaos due to overlapping resonances. Note

that the separatrix of each of these resonances is time-independent only in its

own frame of reference. Thus, to visualize the combined effect of both reso-

nances and be able to interpret them using resonance overlaps, we construct

stroboscopic surfaces of section. Specifically, we record p and φ only once per

eccentricity cycle at τ = 0, 2π, 4π, · · · , because in this case we have H(φ̄) = H(φ)

for any harmonic. This enables us to overlay analytic calculations of the sep-

aratrices on top of the surface of section in a meaningful way. By doing this,

we can say that Figure 3.7 indeed demonstrates that, approximately, given two

resonances N and M separated by a distance ∆p, chaotic evolution of p = cos θsl

is induced when

∆p <∼
1

2
(wN + wM) . (3.57)

When this occurs, the region of chaotic evolution approximately spans the areas

of both separatrices.

Figure 3.8 shows an example when four resonances are included in the

Hamiltonian. In practice, a particular resonance likely only overlaps with the

resonance nearest to it. Thus it is possible to observe features such as those

depicted in Figure 3.8: multiple isolated regions of chaos separated by a large

domain of periodic space.
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3.7 Application to the Full Problem of Lidov-Kozai driven Spin

Precession

We now examine the full problem of stellar spin dynamics driven by a planet

undergoing LK cycles, with the Hamiltonian given by Eq. (3.37). If the chaotic

behaviour of this full system is indeed determined by resonances and their over-

laps, and, as discussed in Section 3.4.3, there exists a maximum resonance order

Nmax, we expect that approximating this full system with one consisting only of

all harmonics with |N | < Nmax should reproduce the key features of the system.

Thus we consider the approximate Hamiltonian

H ′app '
ᾱ

ne

[
−1

2
p2 + ε ψ0 p

− ε
2

√
1− p2

Nmax∑
N=−Nmax

(βN + γN) cos(φ−Nτ)

]
. (3.58)

We evolve equations of motion obtained from both Eq. (3.37) and Eq. (3.58).

Figure 3.9 compares the resulting surfaces of section for several values of ε. It is

apparent that taking only the innermost 2Nmax + 1 harmonics in the perturbing

functions adequately reproduces the behavior of the full system, with better

agreement for smaller ε.

We may now consider whether the overlap of these resonances can explain

the width of the chaotic region as a function of ε. Figure 3.10 shows that this

is indeed the case. Given a value of ε, there exists a prograde (positive) “outer-

most” resonance N = N+
out (> 0) which overlaps with the “previous” resonance

(N+
out − 1) but not with the “next” one (N+

out + 1). Since the separation (in p) of

two neighboring resonances is ∆p ' 1/Nmax [see Eq. (3.48)], this “outermost”
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Figure 3.10: Demonstration of how overlapping resonances can explain several
features of the ε = 0.02 surface of section shown in the right panels of Fig. 3.9.
Top left panel : The entire surface of section, with the separatrices for the N=42
(bottom green), 29 (red), and −41 (top green) resonances overlaid. Top right
panel : Zoom-in on the top portion of the surface of section; the separatrices for
resonances with N = −40 (blue), −41 (green), −42 (red), and −43 (orange) are
overlaid. Bottom left panel : Zoom-in on the gap located at p ≈ −0.6; from top to
bottom, the separatrices for the N = 27 (blue), 28 (green), 29 (red), 30 (red), 31
(green), and 32 (blue) resonances are overlaid. Bottom right panel : Zoom-in on
the bottom portion of the surface of section; the separatrices for N = 41 (blue),
42 (green), 43 (red), and 44 (orange) are overlaid.

resonance is determined by the conditions

1

2

(
wN+

out
+ wN+

out−1

)
>

1

Nmax

, (3.59)

and
1

2

(
wN+

out
+ wN+

out+1

)
<

1

Nmax

. (3.60)

Likewise, there exists a retrograde (negative) “outermost” resonance N−out (< 0)

which is the last to overlap with the “previous” one (N−out + 1). The locations
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Figure 3.11: Outermost boundaries of the chaotic region as a function of ε, cal-
culated by determining the outermost resonance N±out which still overlaps with
the previous one. The non-monotonic nature of the width of the chaotic region
is due to the non-monotonic behavior of the Fourier coefficients of the reso-
nant forcing terms (βN + γN ; see Fig. 3.3). Note that while the spin evolution is
strictly non-chaotic outside the chaotic zone (the shaded region), there could be
periodic windows inside the chaotic zone.

of these two “outermost” resonances, as determined by the resonant momenta

p±N,out ' −N
±
out/Nmax, bound the chaotic region in the p-space* .

As ε is varied, N±out and p±N,out vary as well. Thus we may analytically com-

pute the extent (i.e. the outermost boundaries in the p-space) of wide-spread

chaos as a function of ε. The result is shown in Figure 3.11 (note that winthin

the chaotic zone in p-space, there can still exist periodic islands; see below).

Figure 3.10 brings to light another interesting feature of this dynamical sys-

tem: the existence of narrow isolating regions of non-chaotic behavior, span-

ning the entire {0, 2π} range in the φ coordinate and thus effectively splitting

the phase space into chaotic regions that cannot communicate with each other.

*Note that for sufficiently large |N |, the width of the resonance is small [see Eq. (3.55)]. So
the outer edge of the separatrix of the outermost resonance is close to its center.

62



0.01 0.02 0.05 0.1 0.2 0.5 1.

0

50

100

150

Ε

Θ
sl
Hd

eg
L

Figure 3.12: “Bifurcation” diagram of spin-orbit misalignment angle versus the
adiabaticity parameter ε. For each ε, we evolve the equations of motion starting
with θsl = 0, for ∼ 500 LK orbital eccentricity cycles, and record θsl every time
the eccentricity reaches a minimum. This diagram is similar to Fig. 3.1, except
that all short-range force effects and the back-reaction of the stellar spin on the
orbit are turned off.

This feature arises from the strongly nonlinear variation of the Fourier coeffi-

cient (βN + γN ), and therefore the widths, of the various resonances involved:

resonances that are very narrow are isolated from the surrounding ones, and

quasiperiodic behavior becomes possible in their vicinity. For example, from

Figure 3.5 we see that for ε = 0.05, the resonances of order N = 11 and 12 are

particularly narrow, and indeed they are the ones that cause the narrow band

in the middle panels of Fig. 3.9. Likewise, as demonstrated in the bottom left

panel of Fig. 3.10, for ε = 0.02, the resonances N = 29 and 30 are isolated from

the rest and result in a band of quasi-periodicity.

We now focus on systems which start out with aligned stellar spin and plan-

etary angular momentum axes (i.e. cos θsl = 1) – such systems are very relevant

in the standard picture where planets form in protoplanetary disks aligned with
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the central stars. Two questions are of interest: first, given a specific value of ε,

will such an initially aligned state experience chaotic or quasiperiodic evolu-

tion, and second, if the evolution is chaotic, how much of the available phase

space will it span, i.e. how much will cos θsl vary? (A third question may also

be asked - what happens if ε slowly evolves as a function of time, as it might in

a physical system due to tidal dissipation? We address this issue in Section 3.8

below).

To address these questions, we numerically construct a “bifurcation di-

agram” (Fig. 3.12), using the equations of motion of the full Hamiltonian

(Eq. 3.37). For each value of ε we compute the spin evolution trajectory start-

ing from the initial condition cos θsl = 1. We record on the y-axis the spin-orbit

misalignment angle at every eccentricity minimum (at τ = 0, 2π, 4π...). The re-

sult is, effectively, a 1D surface of section, for a single initial condition. We then

repeat the calculation for a fine grid of ε values. Figure 3.12 shows the result.

Large spread in θsl indicates chaotic behavior, while small spread with well-

defined edges indicates quasiperiodicity*. We see from Fig. 3.12 that, in gen-

eral, the spread of θsl as a function of ε follows the trend analytically predicted

in Fig. 3.11. For example, Figure 3.11 shows that for ε >∼ 0.1, the spin-orbit mis-

alignment of an initially aligned state will evolve chaotically; this is consistent

with Fig. 3.12, which shows that θsl undergoes large excusion for ε >∼ 0.1. Figure

3.11 also shows that only for ε <∼ 0.02, the aligned initial state will not evolve

into the chaotic zone; this is also reflected in Fig. 3.12, where for ε <∼ 0.02 the

spread in θsl is confined to a narrow region around θsl = 0.

However, the transition between quasi-periodic evolution and chaotic evo-

*Note that rigorously speaking, it is not certain that a region with small spread is periodic;
such a region could still be chaotic but tightly isolated (see also Fig. 3.1).
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lution of stellar spin for an initially aligned state is fuzzy. As seen in Fig. 3.12,

for ε between∼ 0.02 and∼ 0.1, the regular (periodic) regions (with small spread

in θsl) are interspersed with the chaotic zones (with large spread in θsl). In partic-

ular, for ε ∼ 0.04− 0.07, the spin evolution is mostly chaotic but with somewhat

regularly spaced periodic regions – “periodic islands in an ocean of chaos” (see

Fig. 3.13). Toward smaller ε, the periodic islands expand and the chaotic re-

gions shrink, so that for ε <∼ 0.04 the spin evolution becomes mostly periodic,

with small finely tuned chaotic domains that are shown in Fig. 3.14 to be lin-

early spaced in 1/ε – “chaotic zones in a calm sea”. To illustrate how the theory

of overlapping resonances can explain these features, Figure 3.15 takes a closer

look at the resonances near cos θsl = 1 for three closely spaced values of ε. Natu-

rally, as discussed in Section 3.4.3, the resonance that determines the evolution-

ary behavior of the initially-aligned system is N = −Nmax, since it has pN ' 1.

As ε is varied, the trajectory of the system falls either inside the N = −Nmax res-

onance, or outside it, or right on its separatrix. The proximity of the N = −Nmax

resonance to the N = −Nmax + 1 resonance then determines the evolutionary

trajectory of the system. If the two resonances overlap strongly, then all trajec-

tories in the vicinity will be chaotic, but this is not the case in Fig. 3.15. Instead,

for small values of ε, the N = −Nmax separatrix appears to be close to, but not

quite touching, its neighbor. This, in principle, does not completely preclude

chaos, since the Chirikov criterion is, in fact, too strict and chaos can still ex-

ist when two resonances are sufficiently close to each other and the trajectories

are close to one of the separatrices (Chirikov, 1979; Lichtenberg and Lieberman,

1992). This is the case in Fig. 3.15: the chaotic trajectory of the middle panel falls

right on the separatrix and effectively “rides” it out and onto the neighboring

resonance. Thus, the series of peaks at small values of ε in Fig. 3.12 are due
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Figure 3.13: Zoom in on Fig. 3.12 in the region 0.04 < ε < 0.07. Here the spin
evolution is mostly chaotic (with large scatter in θsl), with periodic regions (with
θsl close to zero) appearing in the middle of the chaos. The range of chaotic
excursion is limited to be less than ∼ 130◦ due to a periodic island at cos θsl ∼
−0.5 caused by the narrow width of the N = 11 and 12 resonances (see Fig. 3.5
and middle panels of Fig. 3.9).

to the varying proximity of the N = −Nmax resonance to cos θsl = 1 and to its

neighboring resonances.

3.8 Adiabatic Resonance Advection

For a non-dissipative system, the adiabaticity parameter ε is a constant. In the

previous sections we have demonstrated that the dynamical behavior of the

stellar spin axis for different values of ε can be understood using secular spin-

orbit resonances. Here we discuss the phenomenon of “adiabatic resonance ad-

vection”, and demonstrate the importance of resonances when dissipation is

introduced in our system.

As noted in Section 3.2, in the “Lidov-Kozai + tide” scenario for the forma-
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Figure 3.14: Zoom in on Fig. 3.12 in the region 0.025 < ε < 0.0286, plotted
against 1/ε. Here the spin evolution is mostly regular or periodic (with small
scatter in θsl), but chaotic zones (with large scatter in θsl) appear in the middle
of the “calm sea”. The occurrence of the chaotic zones is approximately evenly
spaced in 1/ε.

tion of hot Jupiters (Correia et al., 2011; Fabrycky and Tremaine, 2007; Naoz

et al., 2012; Petrovich, 2015b; Storch et al., 2014; Wu and Murray, 2003), tidal

dissipation in the planet at periastron reduces the orbital energy, and leads to

gradual decrease in the orbital semi-major axis and eccentricity. In this process,

ε slowly decreases in time. In SAL, we have considered various sample evolu-

tionary tracks and shown that the complex spin evolution can leave an imprint

on the final spin-orbit misalignment angle. A more systematic study will be

presented in a future paper (Anderson, Storch, and Lai, in prep).

In Fig. 3.16, we show a particular evolutionary track of our system, obtained

by integrating the full equations of motion for the LK oscillations, including the

effects of all short-range forces (General Relativity, distortion of the planet due

to rotation and tide, and rotational bulge of the host star) and tidal dissipation

in the planet (see SAL for details). In this example, the adiabatic parameter ε '

0.17 initially and decreases as the orbit decays. So the spin evolution is always
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Figure 3.15: Demonstration of how the variation of resonances with ε leads to
the peculiar oscillatory behavior seen in Fig. 3.14. The evolution of an initially
aligned system is shown in red, and the analytical resonance separatrices are
shown in blue. Top panel: 1/ε = 37.1; the initially aligned system is trapped
within the N = −36 resonance, which is sufficiently far removed from the N =
−35 resonance, so the trajectory is non-chaotic. Middle panel: 1/ε = 37.3; the
N = −36 and N = −35 resonances are close, so the trajectory becomes chaotic;
θsl is confined to< 35◦ because of the gap which separates the two chaotic zones.
Bottom panel: 1/ε = 37.4; the N = −36 resonance has moved up sufficiently so
that it no longer traps the initially aligned system, and the trajectory is regular
again.
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Figure 3.16: Sample time evolution demonstrating non-chaotic drift of an ini-
tially aligned system toward higher misalignment angles. The top panel shows
the orbital semi-major axis, the second panel shows the eccentricity, the third
panel shows the orbital inclination angle θlb and the angle θsb between Ŝ and L̂b,
and the bottom panel shows the spin-orbit misalignment angle θsl. The param-
eters are Mp = 5MJ , Ω̂? = 0.05, a0 = 1.5AU, ab = 200AU, θ0

lb = 89◦, and we have
included all short-range effects (cf. Fig. 3.1). See SAL for details.

in the non-chaotic, adiabatic regime. Interestingly, we see that as a decreases,

the initially aligned state gradually drifts toward a higher misalignment angle

in a well-ordered manner.

To explain this intriguing behavior, we consider a simplified version of the

problem, in which we gradually increase α0 (thereby decreasing ε) while keep-

ing the forcing due to the planet unchanged*. If the evolution of ε is sufficiently

*This simplification implies that the “shape” functions [β(τ), γ(τ) and ψ(τ); see Eqs. (3.38)-
(3.40)] are unchanged as ε evolves. In real Lidov-Kozai oscillations with tidal dissipation (de-
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gradual, then given an initial state there exists an adiabatic invariant that is con-

served as ε changes:

J =

∮
p dφ, (3.61)

where the integration covers a complete cycle in the φ-space. This quantity is

equivalent to the area enclosed by the trajectory in phase space. Since, as dis-

cussed previously, the N = −Nmax resonance is the one that most strongly in-

fluences the initially-aligned system, we consider the single-resonance Hamil-

tonian (Eq. 3.52) for this resonance. Since this Hamiltonian is independent of

time, it is conserved, i.e. E = H(φ0, p0) is a constant so long as ε is constant.

Conversely, a single value of E corresponds to a unique phase space trajectory

p(φ;E, ε). It follows that the adiabatic invariant can be expressed as a function

of E and ε, i.e., J = J(E, ε).

As the system evolves (ε slowly changes), J(E, ε) is kept constant, so E must

change. These changes in ε and E lead to changes in the phase space trajectory.

For an initially circulating trajectory that spans the entire {0, 2π} range in φ, to

conserve the area under the curve the most that can happen is that an initially

curved trajectory must flatten, approaching p = const, where the constant is

roughly the average of p over the initial trajectory. However, if a trajectory is

librating and only encloses a small area, it can be a lot more mobile as ε evolves.

As demonstrated in Fig. 3.15, one way for the initially-aligned trajectory to be

librating is for it to be trapped inside the −Nmax resonance. We also know that

as ε decreases the resonance must move toward p = 0 [see Eqs. (3.47)-(3.48)].

We therefore posit that it is possible that the initially-aligned trajectory can be

advected with the resonance, and gradually taken to higher misalignment an-

picted in Fig. 3.16), the range of eccentricity oscillations changes over time, with the minimum
eccentricity emin gradually drifting from e0 toward emax, thereby changing the shape functions.
To study this phenomenon quantitatively, this effect needs to be included.

70



Ε " 0.1

Ε " 0.05

Ε " 0.02

0
Π

2
Π 3Π

2
2 Π

0.0

0.2

0.4

0.6

0.8

1.0

Φ

c
o
s
Θ
s
l

10 1005020 2003015 15070
0.0

0.2

0.4

0.6

0.8

1.0

1!Ε

c
o
s
Θ
s
l

Figure 3.17: Proof of concept for “adiabatic resonance advection”. Top
panel: Sample spin evolution trajectories (constant-energy curves in the cos θsl-φ
phase space) for several values of ε. The system initially has ε = 0.1 and is con-
tained within the N = −9 resonance with pN ' 1. As ε slowly decreases due to
dissipation, the resonance center pN moves to smaller values, with the sample
trajectory’s area remaining constant. Bottom panel: Location (solid black line)
and width (grey area) of the N = −9 resonance as a function of 1/ε, demonstrat-
ing that pN moves toward p = 0 and the resonance width (in cos θsl) narrows
with decreasing ε. The sample trajectory trapped inside the resonance must fol-
low the resonance in accordance with the principle of adiabatic invariance.
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gles. A proof of concept of this process is shown in Fig. 3.17. While a detailed

study of this process (such as the condition for resonance trapping) is beyond

the scope of this paper, we note that it has many well-known parallels in other

physical systems, such as the trapping of mean-motion resonances when multi-

ple planets undergo convergent migration.

3.9 Conclusion

In this work we have continued our exploration of Lidov-Kozai driven chaotic

stellar spin evolution, initially discussed in Storch et al. (2014), by developing

a theoretical explanation for the onset of chaos in the “adiabatic” to “trans-

adiabatic” regime transition. The behaviour of the stellar spin evolution de-

pends on the adiabaticity parameter ε [see Eq. (3.1) or (3.24)]. Using Hamilto-

nian perturbation theory, we have identified a set of spin-orbit resonances [see

Eq. (3.45)] that determine the dynamical behaviour of the system. The resonance

condition is satisfied when the averaged spin precession frequency of the star

is an integer multiple of the Lidov-Kozai precession frequency of the planet’s

orbit. We have shown that overlaps of these resonances lead to the onset of

chaos, and the degree of overlap determines how wide-spread the chaos is in

phase space. Some key properties of the system include the facts that the width

of an individual resonance is a non-monotonic function of the resonance order

N (see Fig. 3.5), and that there exists a maximum order Nmax [see Eq. (3.47)] that

influences the spin dynamics. These properties lead to several unusual features

(such as “periodic islands in an ocean of chaos”) when the system transitions

(as ε decreases) from the fully chaotic regime to the fully adiabatic regime (see

Fig. 3.12). Focusing on the systems with zero initial spin-orbit misalignment an-
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gle, our theory fully predicts the region of chaotic spin evolution as a function

of ε (see Fig. 3.11) and explains the non-trivial features found in the numeri-

cal bifurcation diagram (Fig. 3.12). Finally, we use the spin-orbit resonance and

the principle of adiabatic invariance to explain the phenomenon of “adiabatic

resonance advection”, in which the spin-orbit misalignment accumulates in a

slow, non-chaotic way as ε gradually decreases as a result of dissipation (see

Section 3.8).

The system we considered in this paper is idealized. We have not included

the effects of short-range forces, such as periastron advances due to General

Relativity, and the planet’s rotational bulge and tidal distortion. We have also

ignored the back-reaction torque from the stellar quadrupole on the orbit. These

simplifications have allowed us to focus on the spin dynamics with “pure” or-

bital Lidov-Kozai cycles. Finally, we have only briefly considered the effects of

tidal dissipation, using an idealized model in which the “shape” of the Lidov-

Kozai oscillations does not change as the semi-major axis decays. All of these ef-

fects will eventually need to be included, if we hope to not only understand the

origin of the chaotic behavior but also make predictions for the observed spin-

orbit misalignment distributions in hot Jupiter systems. We begin to systemati-

cally explore these issues numerically in a future paper (Anderson, Storch, and

Lai, in prep).
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CHAPTER 4

DYNAMICS OF STELLAR SPIN DRIVEN BY PLANETS UNDERGOING

LIDOV-KOZAI OSCILLATIONS: PATHS TO MISALIGNMENT

4.1 Abstract

Many systems hosting a hot Jupiter (HJ) exhibit significant misalignment be-

tween the spin axes of the host stars and the orbital axes of the HJs (“spin-orbit

misalignment”). The Lidov-Kozai (LK) mechanism of HJ formation provides a

natural means of generating such misalignment, but the process is complicated

due to stellar spin-orbit coupling. We have previously shown (Storch et al.,

2014) that, through this coupling, a HJ undergoing LK oscillations induces com-

plex motion in the spin axis of its host, which at times can even be chaotic.

Recently (Storch and Lai, 2015b) we have analyzed the origin of this chaos in an

idealized non-dissipative LK system and identified a set of secular resonances

whose overlaps are responsible for the chaos. Here we extend our analysis to

non-ideal systems, including the effects of short range forces, and tidal dissipa-

tion, and categorize the various paths to spin-orbit misalignment that a system

can take. We identify four distinct means of generating misalignment, only two

of which are capable of producing retrograde orbits, and show that the path to

misalignment that a given system takes depends on only two parameters, which

compare the stellar spin axis precession rate with the LK-induced rate of change

of the orbital axis, and with the LK oscillation timescale itself.

The contents of this chapter are in preparation for submission to MNRAS as "Dynamics of
Stellar Spin Driven by Planets Undergoing Lidov-Kozai Oscillations: Paths to Misalignment"
(Storch et al., 2015)
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4.2 Introduction

The recent discovery of misalignment between the orbital axes of hot Jupiters

(HJs; giant planets found within 0.1 AU of their host stars) and the spin axes

of their host stars (Albrecht et al., 2012; Hébrard et al., 2008, 2010; Narita et al.,

2009; Triaud et al., 2010; Winn et al., 2009) remains a hot topic of interest in the

exoplanet community. While primordial disk misalignment is a possible expla-

nation of this (Bate et al., 2010; Batygin, 2012; Batygin and Adams, 2013; Lai,

2014; Lai et al., 2011; Spalding and Batygin, 2014), dynamical means of generat-

ing misalignment are worth exploring.

Lidov-Kozai (LK) oscillations (Kozai, 1962; Lidov, 1962) – one of the pro-

posed channels of hot Jupiter formation – provide a natural means of generating

misalignment. Lidov-Kozai oscillations occur when the proto-HJ’s host star has

a binary companion. A proto-HJ is assumed to form at several AU from its host.

If its orbital axis is sufficiently misaligned relative to the outer binary axis, its

orbit undergoes large correlated variations in eccentricity and inclination. If the

misalignment is substantial, very high eccentricities (in excess of 0.99) can be

attained; during these high-eccentricity phases, tidal dissipation at periastron

brings the planet close to its host, eventually creating a HJ.

Since, presumably, the LK migration happens when the host star is still rel-

atively young and therefore spinning rapidly, significant coupling can exist be-

tween the dynamics of the proto-HJ and the dynamics of the stellar spin axis.

This coupling is vital in determining the final spin-orbit misalignments of these

systems. Indeed, in Storch et al. (2014), hereafter SAL, we showed that the stel-

lar spin axis dynamics, driven by the periodic changes in the planet orbit, can
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be very complex, and even chaotic. Subsequently, in Storch and Lai (2015b),

hereafter SL15, we discussed the origin of the chaotic behavior by analyzing

an idealized system with no tidal dissipation and considering only the cases in

which the stellar spin precession rate was much higher than the LK oscillation

frequency (the “adiabatic” regime). In the present work, we extend our analysis

to the non-adiabatic regime (i.e. the regime in which the star precesses slowly),

as well as account for non-ideal effects (such as periastron advance due to GR

and planet oblateness), include tidal dissipation and discuss the various paths

to spin-orbit misalignment that LK oscillations can induce.

This paper is organized as follows. In section 4.3, we give a review of our

previous work and the most important concepts in LK-driven spin-orbit dy-

namics. In section 4.4, we discuss the effect that short-range forces have on the

spin-orbit dynamics. In section 4.5, we classify the different regimes of non-

dissipative spin dynamics. In sections 4.6 and 4.7, we include tidal dissipation

and discuss the various paths toward misalignment and the parameters that de-

termine which paths a system takes. We discuss and summarize our findings in

section 4.8.

4.3 LK-Driven Spin Dynamics: Review

4.3.1 Lidov-Kozai oscillations

We consider a star of massM? hosting a planet of massMp (such thatM? �Mp),

and a stellar binary companion with mass Mb. Note that, in all calculations

presented in this paper, we assume M? = Mb = 1M�.
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In this work we consider LK oscillations to quadrupole order only. We as-

sume the host star and binary companion are in a fixed circular orbit with semi-

major axis ab, and thus the binary orbital axis L̂b defines the invariant plane of

the system.

The planet orbit is described by its semi-major axis a, eccentricity e, and

angular momentum vector L, which is inclined relative to L̂b. We define

cos θlb ≡ L̂ · L̂b. In the LK mechanism, if 40◦ <∼ θlb <∼ 140◦, the planet orbit

undergoes oscillations in e and θlb, as well as nodal and periastron precession,

while conserving L · L̂b. The oscillations happen on a characteristic timescale

given by

t−1
k = n

(
Mb

M?

)(
a

ab

)3

, (4.1)

where n ≡ (GM?/a
3)1/2 is the mean motion frequency of the planet. In the

absence of short-range forces, the maximum eccentricity achieved during an LK

cycle is approximately

emax '
(

1− 5

3
cos2 θ0

lb

)1/2

. (4.2)

A detailed discussion of the equations governing LK oscillations, and their

analytical solution, can be found in SL15 [see also Kinoshita and Nakai (1999)].

For our present purposes, the one important quantity is the frequency of eccen-

tricity oscillations, which is given by

ne = Kt−1
k , (4.3)

where K is of order 1. We also define the quantities

Ωpl ≡ Ωpl,0f(e) ≡ dΩ

dt
, θ̇lb ≡

dθlb

dt
(4.4)

as the nodal precession rate of L̂ (with Ωpl,0 the nodal precession rate at e = 0),

and the nutation rate of L̂, respectively. Each of these is a strong function of
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eccentricity, and therefore time; together, they serve as driving forces for the

stellar spin dynamics. Their precise forms can be found in SL15.

4.3.2 Stellar Spin Precession

Due to the star’s rotation-induced quadrupole, the stellar spin axis Ŝ experi-

ences periodic torquing from the planet, which is strongest at the maximum

eccentricity points of the LK cycle. This torque induces precession of Ŝ around

the planet’s orbital angular momentum axis L̂, governed by the equation

dŜ

dt
= ΩpsL̂× Ŝ, (4.5)

where

Ωps ≡ −
3GMp(I3 − I1)

2a3(1− e2)3/2

cos θsl

S
(4.6)

is the precession frequency. Here I3 and I1 are the principal moments of inertia

of the star, S is the magnitude of the spin angular momentum, and θsl is the

angle between Ŝ and L̂. To separate out the θsl and e dependencies, we define a

function α(t) as

Ωps(t) ≡ −α(t) cos θsl = − α0

[1− e(t)2]3/2
cos θsl, (4.7)

where

α0 =
3GMp(I3 − I1)

2a3I3Ω?

= 1.19× 10−8

(
2π

1yr

)(
2kq
k?

)(
103Mp

M?

)(
Ω̂?

0.05

)
×

×
( a

1AU

)−3
(
M?

M�

)1/2(
R?

R�

)3/2

. (4.8)
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Here we have used (I3 − I1) ≡ kqM?R
2
?Ω̂

2
?, with Ω̂? = Ω?/(GM?/R

3
?)

1/2 the di-

mensionless stellar rotation rate, and S = I3Ωs ≡ k?M?R
2
?Ω?. For a solar-type

star, kq ≈ 0.05, and k? ≈ 0.1 (Claret and Gimenez, 1992).

Note that since α(t) is just Ωps evaluated at cos θsl = 1, it gives the maximum

attainable spin precession rate at any given point in time, and α0 gives the max-

imum precession rate at e = 0. We emphasize that these rates depends linearly

on both the planet mass Mp and the stellar spin rate Ω?, and are strong inverse

functions of the semi-major axis a.

SAL and SL15 further defined an adiabaticity parameter ε as

ε ≡ Ωpl,0

α0

, (4.9)

and showed that, generically speaking, ε serves as a predictor for the behavior

of the system. Given a set of initial parameters such that ε � 1, the system

behaves “non-adiabatically”: the nodal precession of L̂ is much faster than the

precession of Ŝ; therefore, Ŝ essentially precesses around the time average of

L̂, thereby conserving θsb, the angle between the stellar spin axis and the outer

binary axis. If ε � 1, the system behaves “adiabatically”: the nodal precession

of L̂ is much slower than the precession of Ŝ, and therefore Ŝ has no trouble

keeping up with L̂ and conserves θsl. For intermediate values of ε, which SAL

termed the “trans-adiabatic” regime, the spin dynamics is complex and often

chaotic. SL15 focused on exploring the spin dynamics in this regime but close

to the adiabatic transition (i.e. for ε <∼ 1). We discuss their methods and findings

in the rest of this section.
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4.3.3 Hamiltonian Spin Dynamics

Because our primary goal is to study the behavior of the spin-orbit misalign-

ment angle θsl, it is convenient to work in a frame of reference where L̂ is invari-

ant. In this frame, it can be shown (SL15) that the spin dynamics are governed

by the following Hamiltonian:

H = −1

2
α(t) (cos θsl)

2 − θ̇lb(t) sin θsl sinφsl

−Ωpl(t)
[
cos θlb(t) cos θsl − sin θlb(t) sin θsl cosφsl

]
, (4.10)

where φsl is the precession phase of Ŝ about L̂. Note that here φsl and cos θsl

constitute the conjugate pair of variables, with cos θsl acting as the conjugate

momentum. When the first term of the Hamiltonian is large compared to the

others, the system is adiabatic. When it is small, the system is non-adiabatic.

In order to simplify this Hamiltonian, SL15 introduced a rescaled time vari-

able τ , defined as

τ(t) =
ne
ᾱ

∫ t

0

α(t′)dt′, (4.11)

where
ᾱ

ne
≡ 1

2π

∫ 2π/ne

0

α(t)dt (4.12)

is the ratio of the time-averaged maximum spin precession frequency α(t) and

the LK eccentricity precession rate ne and thus gives the maximum number of

times that Ŝ can go around L̂ in one LK cycle. Thus, ᾱ/ne is, in fact, a better

measure of the adiabaticity of the system than ε, which is a fact that we discuss

in more detail later in the section. Using the new rescaled time variable τ , which

is normalized such that it varies from 0 to 2π in one LK eccentricity cycle, the
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Hamiltonian can now be recast in the following form:

H ′(p, φsl, τ) =
ᾱ

ne

{
−1

2
p2 + εψ(τ) p

− ε
√

1− p2
[
β(τ) cosφsl + γ(τ) sinφsl

]}
, (4.13)

where we have defined p ≡ cos θsl, and

εβ(τ) = −Ωpl(τ)

α(τ)
sin θlb(τ), (4.14)

εγ(τ) =
θ̇lb(τ)

α(τ)
, (4.15)

εψ(τ) = −Ωpl(τ)

α(τ)
cos θlb(τ). (4.16)

Since ε = Ωpl,0/α0, the functions β(τ), γ(τ) and ψ(τ) are “shape” functions

that depend only on the “shape” of the orbit, i.e., on e(τ) (with τ varying from 0

to 2π). For a given θlb,0 (and e0 ' 0), and in the absence of tidal dissipation and

short-range forces, these functions are fixed and do not depend on any other

parameters. These shape functions can then be decomposed into Fourier com-

ponents, as

β(τ) =
∞∑

M=0

βM cosMτ, (4.17)

γ(τ) =
∞∑

M=1

γM sinMτ, (4.18)

ψ(τ) =
∞∑

M=0

ψM cosMτ, (4.19)

and the Hamiltonian can be written as

H ′ =
ᾱ

ne

{
−1

2
p2 + ε ψ0 p+ ε p

∞∑
M=1

ψM cosMt

− ε

2

√
1− p2

∞∑
M=0

[
(βM + γM) cos(φsl −Mτ)

+(βM − γM) cos(φsl +Mτ)
]}
. (4.20)
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Note that γ0 is not defined in Eq. (4.18). For convenience, we set γ0 = β0, but

note that in actuality the time average of the function γ(τ) is 0, due to its anti-

symmetric shape.

A resonance occurs when the argument of one of the cosine functions in

the above Hamiltonian is slow-varying, i.e. if dφsl/dτ = N , with N an integer

(positive or negative). All discussion up to this point has applied for arbitrary

ε; now, however, in order to acquire a tractable resonance condition, we now

assume ε is small. In than case, the Hamiltonian is dominated by the first term

and we have dφsl/dτ ' pᾱ/ne. Then the resonance condition becomes

Ω̄ps = −ᾱ cos θsl = Nne, with N = 0,±1,±2,±3, · · · (4.21)

That is, when the time-averaged stellar spin precession frequency is equal to

an integer multiple of the LK eccentricity precession rate ne, the system expe-

riences a resonance. When this happens, the influence of all other terms in Eq.

(4.20) can be averaged out and the system is governed by the single-resonance

Hamiltonian

HN =
ᾱ

ne

[
−1

2
p2 + ε ψ0 p

− ε
2

√
1− p2 (βN + γN) cos(φsl −Nτ)

]
. (4.22)

Note that, since cos θsl spans the range of values {−1, 1}, it follows that for

a given ᾱ there exists an entire set of resonances, with zeroth order resonant

momenta given by

pN = (cos θsl)N = −Nne
ᾱ

. (4.23)

Since cos θsl cannot exceed 1, that means there exists a maximum resonance order

Nmax =
ᾱ

ne
, (4.24)
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which we allow to be non-integer because, as discussed previously, it also has

physical significance as simply the maximum number of times Ŝ can go around

L̂ in one LK cycle. In later sections we show that, when tidal dissipation is

introduced, this parameter is a key parameter in determining the dynamics of

the system.

As discussed in great detail in SL15, in cos θsl vs φsl − Nτ phase space, the

region of influence of each resonance is defined by its separatrix, which has a

distinctive cat-eye shape centered on cos θsl = pN and φsl−Nτ = 0 or π, depend-

ing on the sign of (βN + γN) (see Fig. 4.3). The Chirikov criterion (Chirikov,

1979) states that overlaps in the separatrices of two or more resonances leads

to chaos. We thoroughly explored this idea in SL15 and showed that, indeed,

the appearance of chaos in the system can be explained by overlaps between

resonances of different N ’s.

One final point needs to be made. Recall, once again, that the above dis-

cussion of resonances applies solely in the regime where the first term of the

Hamiltonian (4.20) dominates over the others. We stated, above, and in SL15,

that this regime corresonds roughly with ε <∼ 1. More precisely, however, since

in general (see SL15) we have (β0 + γ0) > (βN + γN) for N 6= 0, the boundary of

this regime can be defined more accurately as ε(β0 + γ0) <∼ 1. We thus define

Ā ≡ ε−1(β0 + γ0)−1 (4.25)

as a new, more precise, adiabaticity parameter, such that when Ā >∼ 1 the system

is adiabatic. Ā is related to Nmax via

Ā =
Nmaxne

2〈Ωpl sin θlb〉
, (4.26)

where the triangle brackets denote time averaging, and physically represents

the ratio of the maximum change in Ŝ to the change in L̂ during one LK cycle.
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Thus, if Ā � 1, the spin vector hardly moves compared with the orbital angu-

lar momentum vector and the system behaves non-adiabatically, whereas when

Ā � 1 the system behaves adiabatically as long as cos θsl is not very close to 0.

The quantity ne/〈Ωpl sin θlb〉 is invariant so long as the “shape” of the orbit

remains the same, i.e. it depends only on a, θlb,0 and e(τ). Thus, so long as the

“shape” of the orbit is unchanged, only one parameter (either Ā or Nmax) need

be used to determine the behavior of the system. In comparing the behavior

of systems with orbits of different “shapes”, however, both parameters are cru-

cial. To recap, Ā compares the rate of change of Ŝ with the rate of change of L̂,

whereas Nmax compares the rate of change of Ŝ with the LK eccentricity oscil-

lation frequency ne and sets the maximum resonance order. Physically, it is of

note that both Nmax and Ā scale linearly with the stellar spin rate and the planet

mass. In the remainder of the paper, we will show how the values that these

two parameters take determine the behavior of the system and, in the presence

of tidal dissipation, the ultimate fate of the spin-orbit misalignment angle.

4.4 Effect of Short-Range Forces

The analysis of SL15 focused solely on the “pure” Lidov-Kozai system described

briefly in Section 4.3.1. As a step toward realism, we now account for extra

periastron advance induced in the system by perturbations due to GR and the

tidally- and rotationally-induced quadrupole moments of the planet (Wu and

Murray, 2003). The extra periastron advance affects the LK+spin dynamics in

two ways.

First, it slightly changes the LK eccentricity timescale ne; this change is
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largely unimportant.

Second, it (sometimes significantly) reduces the maximum eccentricity at-

tained during each LK cycle (Liu et al., 2015), thus changing the “shape” of e(t).

The new maximum eccentricity depends not on θlb,0 (cf Eq. 4.2), but on the

physical parameters of the system, including the planet mass Mp, semi-major

axis a, and binary separation ab. This leads to significant changes in the shape

functions defined in Eqs. (4.14)-(4.16) and hence in the Fourier coefficients βN ,

γN and ψN . Figure 4.1 demonstrates this effect: in general, the variation in the

shape functions becomes smoother and less pronounced. We note that from Fig.

4.1 it is obvious that short-range forces increase β0 (the τ -average of Eq. 4.14)

and therefore decrease Ā (Eq. 4.25), making the system less adiabatic.

Due to the reduction of emax, the maximum of α(t) (Eq. 4.7) is also reduced,

leading to a significant decrease in ᾱ (Eq. 4.12). Thus, another consequence of

the inclusion of short-range forces is a decrease in the parameterNmax (Eq. 4.24).

Figure 4.2 presents Nmax as a function of the initial orbital inclination θlb,0 with

and without short-range forces, to illustrate this effect. We see that, in general,

Nmax is greatly reduced when short-range forces are present. Furthermore, be-

cause short range forces tend to set the maximum eccentricity to a value that is

not sensitive to θlb,0 (Liu et al., 2015), Nmax in the presence of short range forces

becomes nearly independent of the initial inclination. It is worth noting that

Nmax still scales linearly with the stellar spin rate (or inversely with the spin pe-

riod), but its dependence on Mp is no longer as simple, since Mp now plays a

role in setting the maximum eccentricity.

For comparison, Figure 4.3 demonstrates how a sample phase space previ-

ously presented in SL15 (Fig. 6) changes when short-range forces are added to

86



No short-range forces

Β

Ψ

Γ

0 1 2 3 4 5 6
-1.0

-0.5

0.0

0.5

1.0

1.5

Τ

Β
,
Γ

,
Ψ

With short-range forces

Β

Ψ

Γ

0 1 2 3 4 5 6
-1.0

-0.5

0.0

0.5

1.0

1.5

Τ

Β
,
Γ

,
Ψ

Figure 4.1: Shape functions β, γ, and ψ for θlb,0 = 85◦ as a function of the rescaled
time variable τ , without (top panel) and with (bottom panel) short range forces.
Physical parameters for bottom panel are Mp = 5MJ , ab = 300 AU, a = 1.5 AU.

the system: as expected, the number of resonances is signficantly reduced, and

on the whole most resonances become wider. In summary, given a system with

a set of initial parameters, the inclusion of short-range forces changes the shape

functions that drive the spin precession dynamics, and generally decreases both

Ā and Nmax, reducing the degree of adiabaticity of the system.

Finally, note that there is one more non-ideal effect we have continued to

ignore: the perturbation of the planet’s orbit due to the rotationally-induced
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Figure 4.2: Nmax as a function of initial inclination for two planet masses (top
panel: Mp = 5MJ ; bottom panel: Mp = 1MJ ) and two stellar spin periods (red:
P? = 5 days; blue: P? = 2.3 days). Dashed: without short-range forces. Solid:
with short-range forces.

stellar quadrupole. This perturbation comes in two forms: first, just as Ŝ pre-

cesses about L̂, so should L̂ precess about Ŝ. Second, the stellar quadrupole

induces additional periastron advance in the orbit, similar to the other short

range forces. We ignore these effects because, by creating feedback between

stellar spin precession and orbit precession, they break the integrability of the

Hamiltonian system by introducing more degrees of freedom (i.e. e(t), Ωpl(t),

etc would no longer be solely determined by LK dynamics and would not act
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Figure 4.3: Locations of several resonances, labeled on the right-hand side with
their corresponding N , for the shape functions presented in Fig. 4.1 (θlb,0 = 85◦),
with ε = 0.1, without (top panel) and with (bottom panel) short range forces.

as known externally-imposed forcing functions in our Hamiltonian).

Omission of the feedback effect is the single biggest simplifying assumption

we make in our analysis. Particularly for low planet masses and high stellar ro-

tation rates, this makes our subsequent analysis of the spin dynamics somewhat

pedagogical. For higher planet masses and lower stellar spin rates, however, for

which feedback is not as important, our conclusions should still be more or less

robust.
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4.5 Non-dissipative Regime Classification

In this section we discuss the differences in the behavior of a given non-

dissipative system in the non-adiabatic vs adiabatic regimes. For the remainder

of the section, we fix the “shape” of the LK orbit by considering systems with

Mp = 5MJ , θlb,0 = 89◦, a = 1.5 AU, and ab = 300 AU and varying only the

stellar spin period, which scales up/down both Nmax and Ā. Note that, in order

to explore the entire range of possible behaviors, we consider a somewhat un-

physical range of stellar spin periods, from as large as 50 days to as small as 1

day.

We first consider spin dynamics in the non-adiabatic regime, with Ā <∼ 1 and

Nmax � 1. We then consider the adiabatic regime with Ā >∼ 1, which further

breaks into two sub-regimes with Nmax <∼ 1 and Nmax >∼ 1. Finally, we specialize

to the dynamics of trajectories that start with cos θsl = 1 (i.e. zero initial spin-

orbit misalignment) and discuss their behavior in each of the aforementioned

regimes.

4.5.1 Non-adiabatic Regime: Ā <∼ 1

The form of the Hamiltonian (4.20) is such that the non-adiabatic regime of spin

dynamics does not easily lend itself to pertubation theory and cannot easily

be formally explored. Nevertheless, the non-adiabatic regime is very important

(especially for Jupiter-mass planets) and we therefore endeavor to study it based

on our intuition and empirical findings.

We classify the non-adiabatic regime as having Ā <∼ 1 and Nmax � 1 (note
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Figure 4.4: Sample separatrices in phase space for Mp = 5MJ , θlb,0 = 89◦ and,
top to bottom, P? = 50, 25, 20, 3, and 1.7 days.
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that Nmax can never be larger than Ā). In this case, the stellar spin vector Ŝ is

changing slowly compared to both the rate of change of L̂ and the LK oscillation

frequency. We therefore surmise that most of the relevant spin dynamics can be

captured using a time-independent Hamiltonian whose coefficients are the time

averages of the externally imposed shape functions (β, ψ, γ). In other words, we

assume that most of the dynamics can be understood by analyzing the N = 0

Hamiltonian (cf. Eq. 4.22)

H0 =
ᾱ

ne

[
−1

2
p2 + ε ψ0 p−

1

2Ā
√

1− p2 cosφsl

]
, (4.27)

where we have replaced ε(β0 +γ0) using the definition of Ā. The top two panels

of Figure 4.4 present example phase spaces calculated based on this Hamilto-

nian. The curves shown in each panel are separatrices that cannot be crossed

by any trajectory. Thus, the shapes of the separatrices determine the possible

trajectories. An analysis of the separatrix shapes, therefore, sheds light on the

possible behaviors of the system.

At very low values of Ā (Fig. 4.4, top panel), the phase space is roughly split

into two islands of libration. The separatrix of one of them touches cos θsl = 1,

whereas the other touches cos θsl = −1. The centers of these islands (the fixed

points) are closely related to the well-known Cassini states [e.g. Fabrycky et al.

(2007)]. A trajectory starting inside one of these separatrices will librate about

the corresponding fixed point in the center of the island. Trajectories starting in

the narrow region in-between the two separatrices are able to circulate.

As Ā gets closer to 1, the central (centered on φsl = π) libration island ex-

pands, while the other island shrinks and eventually cleaves into two separate

islands, one of which still touches cos θsl = −1 (Fig. 4.4, second panel).

As Ā increases, the center libration island spans an increasingly larger range
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of φsl, until, when Ā ' 1, it spans the entire {0, 2π} range and detaches from

cos θsl = 1, forming the standard cat-eye shaped N = 0 resonance. (Fig. 4.4,

middle panel). This marks the transition from non-adiabatic to adiabatic behav-

ior.

4.5.2 Adiabatic Regime: Ā >∼ 1

Nmax <∼ 1

Shortly after the non-adiabatic to adiabatic transition, Nmax is still small, and

therefore the spin dynamics are still essentially governed by the N = 0 Hamil-

tonian. After the central N = 0 island/resonance has detached from cos θsl = 1,

one of the side islands merges upward and attaches to cos θsl = 1 (Fig. 4.4, mid-

dle panel, shown in red). As Ā and Nmax continue to increase, this new top

island rapidly shrinks and is soon overtaken in importance by the newly form-

ing N = −1 resonance. Likewise, the bottom island shrinks as well and is soon

dominated by the N = 1 resonance.

Nmax >∼ 1

AsNmax approaches 1, the stellar spin dynamics are no longer determined solely

by the N = 0 Hamiltonian. Rather, Hamiltonians for N = 1 and N = −1 must

also be considered (cf. Eq. 4.22). For 0.5 <∼ Nmax <∼ 1, each of these Hamiltonians

produces a separatrix that is attached to cos θsl = 1 (forN = −1) and cos θsl = −1

(for N = 1). As Nmax continues to increase, the separatrices “emerge” more

fully into the phase space until eventually they detach from the top and bottom
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edges and form standard cat-eye shapes. Note that, due to the slight asymmetry

in the Hamiltonians introduced by the ψ0p term, the bottom resonance detaches

slightly earlier than Nmax ' 1, whereas the top resonance detaches slightly later

than Nmax ' 1 (Fig. 4.4, fourth panel).

After the N = ±1 resonances have emerged fully, the N = ±2 resonances

begin to grow, and likewise detach and form cat-eye shapes when Nmax ' 2

(Fig. 4.4, bottom panel).

4.5.3 The initially-aligned trajectory

In the standard planetary system formation scenario, the final outcome is usu-

ally a system in which the stellar spin axis and the planet orbital axis are aligned.

Although in recent years several methods of generating primordial misalign-

ment have been suggested (Bate et al., 2010; Batygin, 2012; Batygin and Adams,

2013; Lai, 2014; Lai et al., 2011; Spalding and Batygin, 2014), for the remainder of

this paper we choose to focus solely on systems with cos θsl,0 = 1, i.e. no initial

spin-orbit misalignment. What determines the behavior of these systems?

One key observation can be taken away from the five panels presented in

Fig. 4.4: regardless of what regime the system is in, there is always a separatrix

“attached” to cos θsl = 1. In the non-adiabatic regime this separatrix is theN = 0

center island. In the adiabatic regime, this separatrix is the N = 0 top island

when Nmax is small, and then N = −1 for Nmax <∼ 1, N = −2 for Nmax <∼ 2,

and so on. These are the separatrices that determine the behavior of the initially

aligned trajectory.
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Figure 4.5: Maximum widths of each of the sample separatrices presented in
Fig. 4.4 as a function of stellar spin period for θlb,0 = 89◦, Mp = 5MJ . Colors
have been chosen to match those of Fig. 4.4. The separatrix widths are shown in
bold solid lines whenever they touch cos θsl = 1, since they then determine the
behavior of the initially-aligned trajectory. After detaching from cos θsl = 1, each
separatrix is shown in thin dashed lines of the same color. Note the transition
from non-adiabatic behavior (controlled by theN = 0 center island) to adiabatic
behavior happens at Ā ' 1.

Figure 4.5 presents a different way of visualizing this information. It shows

the maximum vertical width of each of the relevant (“attached” to cos θsl = 1)

separatrices as a function of the stellar spin period P?, with the corresponding

values of Ā given on the top axes. Note that although we do not show both Ā

and Nmax, in this case, since only the stellar spin period is varied, the two num-

bers are always related by the same factor, with Ā ' 8Nmax. Since, in each case,

the initially-aligned trajectory starts out on the relevant separatrix, its maximum

vertical width represents the maximum range of spin-orbit misalignments that

the trajectory can cover. Thus, in the non-adiabatic regime the stellar spin has

95



the most “freedom” and is able to cover the largest range of cos θsl. As Ā in-

creases, the spin axis’ range of excursion becomes progressively more and more

limited, though not monotonically so.

4.6 Inclusion of Tides: Paths to Misalignment

We now include tidal dissipation in the planet interior and allow the semi-major

axis of the planet to decay, and ask how the non-dissipative regimes outlined in

the previous section map onto final spin-orbit misalignment angle distributions.

We use the standard weak friction model for tidal dissipation; see SAL for de-

tails.

Under the influence of tides, several things happen. First, the semi-major

axis decays, and consequently, the stellar spin precession rate increases (Eq. 4.8).

The orbital and LK precession rates increase too, but not as dramatically, lead-

ing to an overall gradual increase in both Ā and Nmax. As the semi-major axis

decays, the shape of the LK orbit also changes, with the minimum eccentricity

slowly increasing; thus, the shape functions that drive the stellar spin dynam-

ics also slowly change in time. All of these changes, however, are slow enough

for the system to be treated as quasi-static: we assume that for any given LK

cycle the spin dynamics of the initially-aligned trajectory are still governed by

one non-dissipative Hamiltonian, as described in the previous section. How-

ever, over time, i.e. over many LK cycles, the coefficients in the Hamiltonian

slowly change, and the background non-dissipative phase space slowly evolves

through a procession similar to that depicted in Figs. 4.4 and 4.5.

There are two consequences to this very slow evolution of the Hamiltonian
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coefficients. First, since at any given point in time the system is still governed by

a Hamiltonian, a (non-chaotic) trajectory still cannot cross a separatrix (unless

it has no choice – more on this later). The implication of this is that if a trajec-

tory starts out on or inside a certain separatrix, its behavior will continue to be

governed by that (slowly evolving) separatrix.

Second, because the system evolves so gradually (or adiabatically - not to be

confused with the adiabatic regime!), an adiabatic invariant emerges: the area

enclosed by a trajectory in cos θsl − (φsl − Nτ) space is an approximately con-

served quantity. Together, these two ideas (avoidance of separatrix crossings,

and conservation of area) are all that is necessary to understand this dissipative

system. Thus, in principle, knowing what separatrix governs the behavior of

the initially-aligned trajectory at t = 0, plus knowledge of how that separatrix

changes under the influence of tides, should be enough to determine the fate of

the trajectory.

Since we have reasoned that it is the governing separatrix at t = 0 that de-

termines the fate of the system, we define

Ā0 ≡ Ā(t = 0), Nmax,0 ≡ Nmax(t = 0). (4.28)

In the presence of tides, we expect that all possible outcomes may be classified

using these two parameters.

4.6.1 Varying the stellar spin period

We begin by repeating the experiment of Section 4.5, including the influence of

tides. That is, we fix the “shape” of the LK orbit by settingMp = 5MJ , θlb,0 = 89◦,
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Figure 4.6: Final spin-orbit misalignments after tidal dissipation, as a function
of stellar spin period, for Mp = 5MJ , θlb,0 = 89◦, a0 = 1.5 AU, ab = 300 AU.
The blue, red, and purple X symbols correspond to the left, middle, and right
example trajectories shown in Fig. 4.7, respectively. The blue O symbol corre-
sponds to the blue trajectory in Fig. 4.8. The blue and orange square symbols
correspond to the left and right panels of Fig. 4.10, respectively.

a0 = 1.5 AU (the initial semi-major axis), and ab = 300 AU and varying only the

stellar spin period (which remains constant throughout the tidal evolution). We

set θsl,0 = 0 and plot θsl,f , the final spin-orbit misalignment angle, as a function of

the stellar spin period in Figure 4.6. As before, we cover a somewhat unphysical

range of stellar spin periods in order to capture all possible behaviors.

Three distinct categories of outcomes in Fig. 4.6 are rather easily identified.

First: the distinct bimodal distribution at very high spin periods. Second: the

unimodal, monotonically decreasing distribution at high to intermediate spin

periods. Third: the striated pattern of spin-orbit misalignments at low and very

low spin periods. We show an example of time evolutions resulting in each of
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Figure 4.7: Sample evolution trajectories, including tidal dissipation, for θlb,0 =
89◦, Mp = 5MJ and three different values of the stellar spin period. Left panels:
P? = 30 days; middle panels: P? = 7.07 days; right panels: P? = 1.67 days. Top
row: evolution of the orbital elements. Note the orbital elements’ evolution is in-
dependent of the stellar spin period and is therefore the same for all three cases.
Second row: evolution of the spin-orbit misalignment angle θsl. Third row: evo-
lution of cos θsl as well as the relevant background separatrix (see next). Bottom
row: the initial background phase space (cf. Fig 4.4) as well as the first full cycle
of evolution of cos θsl, showing that the relevant background separatrices, from
left to right, are the N = 0 center island (shown in black), the N = 0 top island
(shown in red), and the N = −2 resonance (shown in green).
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these outcomes in Figure 4.7. We discuss each category of outcomes individu-

ally in the following subsections.

4.6.2 Non-adiabatic behavior: bimodality

In order to understand the clean bimodal spin-orbit misalignment distribution

found at high stellar spin periods in Fig. 4.6, we first need to know which sepa-

ratrix governs the behavior of the θsl,0 = 0 trajectory at t = 0. Two simple clues

point us to the answer: first, the left panels of Fig. 4.7 show an example of a time

evolution from the bimodal outcome regime, as well as the t = 0 phase space

for that evolution. We see that, clearly, the separatrix governing the behavior

of the trajectory at t = 0 is the N = 0 central island. Second, in Fig. 4.6 the bi-

modal region ends very close to Ā0 ' 1, i.e. at the stellar spin period for which

at t = 0 we have Ā ' 1. From Section 4.5, we know that Ā ' 1 corresponds to

the transition between non-adiabatic and adiabatic behavior, and that at Ā ' 1

the governing separatrix for the initially aligned trajectory switches from being

the N = 0 center island to the N = 0 top island (see Fig. 4.4, middle panel, and

Fig. 4.5). Thus, it follows that the bimodality found at high stellar spin periods

in Fig. 4.6 corresponds to the initially non-adiabatic regime.

To understand why the outcome is bimodal, we now need to know two

things: how the N = 0 center separatrix changes in time (due to tides), and

how the trajectory interacts with it.

The N = 0 center separatrix changes in time (Fig. 4.7, left, third panel) in a

way exactly analogous to the progression shown in Figs. 4.4 and 4.5. To start

with, the separatrix is attached to cos θsl = 1. As tides act to reduce the semi-
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Figure 4.8: Demonstration of the process that gives rise to the bimodality found
in the non-adiabatic regime of Fig. 4.6. In each panel, the dashed (solid) grey
line shows the N = 0 separatrix at the beginning (end) of the time interval
indicated at the top of the panel, while the colored line shows the actual time
evolution of cos θsl during that time interval. The red trajectory (left panels) has
P? = 30 days and is the trajectory shown in Fig. 4.7 (left) and marked with a
red X in Fig. 4.6. The blue trajectory (right panels) has P? = 29.87 days and is
marked with a blue O in Fig. 4.6. Top panels: both trajectories are contained
within the N = 0 separatrix and their areas are smaller than the separatrix area.
Middle panels: the N = 0 separatrix has shrunk such that its area now matches
the areas of the trajectories, thus the trajectories have no choice but to exist the
resonance. The red (blue) trajectory’s location at time of exit is such that it exits
below (above) the separatix. Bottom panels: both trajectories are now caught in
their respective part of phase space.
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major axis and increase Ā and Nmax, the separatrix detaches from cos θsl = 1 and

slowly shrinks.

On the other hand, the actual trajectory cannot shrink, due to the aforemen-

tioned adiabatic invariance of the area it encloses. Its initial area is set by the

area of the separatrix at t = 0. At intermediate times the separatrix actually

expands (analogously to the transition between panels 1 and 2 of Fig. 4.4) and

the trajectory remains inside the separatrix. After the separatrix detaches and

begins to shrink again, there comes a point when the area of the separatrix is

equal to the area of the trajectory. At that point, the trajectory has no choice

but to cross the separatrix. Figure 4.8 illustrates this idea. At time of crossing,

the trajectory can cross either the top or the bottom part of the separatrix, de-

pending on its phase. Two trajectories that start very close together can, over

time, accumulate enough difference in phase that one ends up exiting through

the top, and the other through the bottom. This is the origin of the bimodality

seen in Fig. 4.6.

This “bifurcation” phenomenon is analogous to the case of a pendulum

whose length is slowly decreased with time. The shorter the pendulum gets,

the larger its amplitude of oscillation becomes, until at some point it must tran-

sition to circulating rather than oscillating. At that point, the pendulum will

either “choose” to circulate clockwise or counterclockwise – corresponding to a

positive or negative conjugate momentum – depending on its phase at the time

of transition.
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4.6.3 Stationary adiabatic behavior

For Ā0 >∼ 1 and Nmax,0 <∼ 0.5, Fig. 4.6 shows a smooth unimodal distribution

of final spin-orbit misalignments, with θsl,f decreasing with decreasing P?. In

the previous subsection, we have already determined that the behavior in this

regime must be governed by the N = 0 top island. The middle bottom panel

of FIg. 4.7 shows that this is indeed the case. In order to understand the distri-

bution of misalignments, we again need to ask how the N = 0 top separatrix

evolves with time, and how the trajectory interacts with it.

Based on Figure 4.5, we know that an increase in Ā or Nmax leads to a rapid

decrease in the width of the N = 0 top island. On the other hand, again, the

actual trajectory area cannot decrease and is set by the initial area of the top

island. Thus, as soon as any significant semi-major axis decay occurs, the tra-

jectory area should exceed the area of the top island, and the trajectory should

circulate on the outside of the island.

For a circulating trajectory, the conserved area becomes the area between the

trajectory and the cos θsl = 0 axis. Thus, as more semi-major axis decay occurs,

the trajectory cannot move up/down, it can only straighten out, eventually set-

tling on a constant cos θsl,f equal approximately to its mean cos θsl at the time of

decoupling from the top island.

Thus, if the top island is initially large, the final θsl,f should be (relatively)

large. For smaller stellar spin periods, the top island decreases in size; therefore,

θsl,f gets closer and closer to 0.

A caveat to the above discussion is the following: farther into the adiabatic

regime, the assumption that only the N = 0 Hamiltonian determines the spin
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dynamics becomes increasingly erroneous, since the stellar spin vector now pre-

cesses at rates comparable to the precession of L̂ and thus sees more than just

the time average of the forcing functions. Thus, although the above discussion

is suggestive and sound, the actual behavior of the trajectory can be a lot more

random and need not obey these rules. This is why, for example, the trajec-

tory depicted in the middle panels of Figure 4.7 actually remains level with, or

inside, the top island for most of its evolution.

We term this regime of behavior “stationary adiabatic” because the trajectory

essentially cannot move away from its initial location. This is to be contrasted

with the behavior discussed in the following section.

4.6.4 Adiabatic advection

The concept of adiabatic advection was first considered by SL15 in a rather spec-

ulative manner. Here we demonstrate that the suppositions of SL15 were, in

fact, exactly correct, and that adiabatic advection is a novel, interesting way of

generating spin-orbit misalignment.

The idea behind adiabatic advection is simple: if at t = 0 the behavior of

the cos θsl,0 = 1 trajectory is governed by a resonance N = −1,−2, · · · , then

as tidal dissipation reduces the semi-major axis of the orbit, the trajectory can

be advected by the governing resonance to non-zero misalignments. Figure 4.9

shows an example of exactly this behavior: in the top panel, at t = 0 we see that

the trajectory is trapped inside the N = −2 resonance, which is still “attached”

to cos θsl = 1. Just over a Gyr later, the resonance has detached and moved

down significantly, and the trajectory has likewise moved down and remains
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Figure 4.9: Demonstration of the process of adiabatic advection by an N = −2
resonance. In both panels, the purple time evolution corresponds to that of Fig.
4.7 (right) and is marked with a purple X in Fig. 4.6. Top panel: the median
shape of the N = −2 resonance and the time evolution of cos θsl is shown at two
different time intervals. In both cases, the trajectory is contained inside the res-
onance. Bottom panel: the full evolution of φsl + 2τ (top sub-panel) and cos θsl

(bottom sub-panel, purple) as well as the maximum width of the N = −2 reso-
nance vs time (bottom sub-panel, green), confirming that the trajectory advects
with the resonance until the resonance shrinks significantly and the trajectory
has no choice but to exit.
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Figure 4.10: Demonstration of the process of adiabatic advection by an N = −1
(top) and an N = −3 (bottom) resonance. The top (bottom) time evolution is
marked in Fig. 4.6 with a blue (orange) square symbol. Just like in Fig. 4.9
the two sample trajectories remain trapped in their respective resonances (top:
N = −1, shown in blue; bottom: N = −3, shown in orange) and are advected
with them.

inside the resonance.

As another means of looking at the situation, we note that at the center of a

resonance of order N we have, by definition, φsl − Nτ = 0. Thus, a trajectory

trapped inside a resonance circulates about this point; that is, φsl−Nτ of such a
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trajectory should exhibit moderate variation about 0. In the bottom panel of Fig.

4.9, we show that this is indeed the case: φsl + 2τ oscillates about 0, indicating

that the trajectory is trapped inside theN = −2 resonance. Likewise, the oscilla-

tions of cos θsl never exceed the maximum width of the N = −2 resonance, thus

also demonstrating that the trajectory is always contained inside.

Similarly, Figure 4.10 shows sample advections byN = −1 (top) andN = −3

(bottom) resonances. By locating these examples on the θsl,f vs P? plot (Fig. 4.6),

we can conclude that each of the diagonally striated lines in Fig. 4.6, located at

0.5 <∼ Nmax,0 <∼ 1, 1 <∼ Nmax,0 <∼ 2, etc., corresponds to advection by a resonance

of a different N .

4.7 Predictive Power

In the previous two sections, we have focused solely on experiments that

changed the spin dynamics in the simplest way possible: by changing the stellar

spin period, while keeping all other system parameters fixed. We would now

like to check whether the understanding of the different outcomes for θsl,f we

developed in the previous section holds up when we change something other

than the stellar spin period. Thus, in Figure 4.11 we present the distributions of

final spin-orbit misalignment angles as a function of the initial orbital inclina-

tion θlb,0, for two values of the stellar spin period and two planet masses.

We find that, indeed, our classification of outcomes holds up well. For

Jupiter-mass planets, the outcomes are either bimodal or stationary adiabatic,

with the transition between the two regimes falling on Ā0 ' 1, as expected. For

the heavier, 5MJ planets, a chaotic band appears at lower misalignments - some-
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Figure 4.11: Final spin-orbit misalignment angle as a function of initial incli-
nation θlb,0, for two different planet masses and two stellar spin periods. The
Mp = 1MJ panels (left) exhibit non-adiabatic (bimodal) and stationary adiabatic
behavior, with the transition from one to the other happening, as expected, at
Ā0 ' 1. The Mp = 5MJ panels (right) exhibit chaos and adiabatic advection
by the N = −2 (top) and N = −1 (bottom) resonances. Because Nmax,0 is very
weakly sensitive to the initial inclination (cf. Fig. 4.2), the final angle after ad-
vection is nearly independent of θlb,0.
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thing we have not yet addressed. Aside from that, however, in the non-chaotic

regions we find that θsl,f is nearly constant, consistent with the fact that Nmax,0 is

moderately large and nearly independent of θlb,0 (as expected based on Fig. 4.2).

We conclude that the top right panel of Fig. 4.11 shows an extended region of

adiabatic advection by the N = −2 resonance, whereas the bottom right panel

of Fig. 4.11 shows a region of advection by the N = −1 resonance.

The appearance of the chaotic band is not something we had previously dis-

cussed or directly foreseen. We surmise, however, that the chaotic band ap-

pears whenever, at t = 0, the resonance governing the cos θsl,0 = 1 trajectory

(e.g. N = −2, as is the case in Fig. 4.11, top right) overlaps with its neighboring

resonance (e.g. N = −1). Based on Fig. 4.5 we know that this is not the case for

θlb,0 = 89◦, and thus it is not surprising that the chaotic region does not extend

all the way to θlb,0 = 89◦. Although we do not plot it, we have checked that,

in fact, for θlb,0 = 87◦ the governing separatrices in both the top and bottom

panels of Fig. 4.11 do indeed overlap with their neighbors, which explains the

randomly distributed final outcomes.

In general, we expect the appearance of chaos to be correlated with the

widths of the resonances. Since the widths of the resonances generally decrease

with increasing Ā0 (see SL15), we expect chaotic bands to be confined to lower

values of Ā0 (but high enough that multiple resonances exist).

Finally, taking one step further, we consider a more general suite of time

evolutions with various initial conditions, such as different planet masses, stel-

lar spin periods, binary separations, and initial inclinations. We categorize each

time evolution according to its outcome: bimodal (non-adiabatic), stationary

adiabatic, adiabatically advected, or chaotic, and plot these outcomes in Nmax,0
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Figure 4.12: Compilation of the outcomes of a suite of time evolutions with vari-
able initial conditions, plotted in Nmax,0 vs Ā0 space. Each outcome is classified
into the categories discussed in section 4.6, plus an extra “chaotic” category. The
variable initial conditions include combinations of various planet masses, stel-
lar spin periods, binary separations, and initial inclinations. Despite varying all
of these initial parameters, we see that the outcomes still obey the guidelines set
out in Section 4.6: non-adiabatic (bimodal) and adiabatic stationary behaviors
happen at low Nmax,0, and are separated by Ā0 ' 1. At higher Nmax,0, advection
and chaotic behavior become possible, with chaotic behavior being restricted to
lower values of Ā0 (for which, generally speaking, all the resonances are wider
and more likely to overlap).

vs Ā0 space (Fig. 4.12). From this figure, it is clear that our understanding of

the different outcomes is sound: at Ā0 <∼ 1, bimodality dominates; at Ā0 >∼ 1

but Nmax,0 <∼ 0.5 stationary adiabatic behavior is prevalent; for Ā0 >∼ 1 and

Nmax,0 >∼ 0.5, adiabatic advection is dominant, except where the evolution is

chaotic, with the chaotic evolution restricted to lower values of Ā0.

Thus, we conclude that knowledge of the two parameters Ā0 andNmax,0 is, in

many cases, sufficient in order to predict whether the final spin-orbit misalign-

ment angle of a given system can be high. For Ā0 <∼ 1, the final misalignment
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distribution is bimodal, and thus a system is equally as likely to have low mis-

alignment as high misalignment. For Ā0 >∼ 1 but Nmax,0 <∼ 0.5 the system is inca-

pable of achieving a significantly misaligned state. For Ā0 >∼ 1 and Nmax,0 >∼ 0.5

a calculation of resonance widths must be carried out to determine whether the

system is chaotic or advecting, but in general it can be expected that if Ā0 is rel-

atively high then the system is not chaotic, and will attain non-zero, but strictly

prograde and fairly modest, misalignment.

4.8 Discussion and Conclusion

4.8.1 Complications due to feedback

As explained in Section 4.4, a major simplifying assumption in the analysis laid

out in this paper, as well as in SL15, is the omission of the extra precession the

planet’s orbit experiences due to perturbation from the stellar quadrupole. This

omission enables us to considerably simplify the spin dynamics problem by

reducing it to a 1D Hamiltonian system. It is important, however, to understand

under what conditions this assumption is valid.

Feedback in the system becomes important if the star has nearly as much, or

more, angular momentum as the planet’s orbit. Thus, it is questionable whether

our analysis is truly applicable to Jupiter-mass (as opposed to heavier) planets

and rapidly rotating stars. However, in a recent work (Anderson et al., 2015),

in prep, we have run a comprehensive suite of numerical simulations including

feedback and all other important effects, including octupole-order Lidov-Kozai.

We found that, while under certain conditions the bimodal and stationary adia-
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batic behaviors expected to dominate for Jupiter-mass planets can be disrupted,

on the whole, bimodality remains nearly ubiquitous. Thus, we conclude that,

even with the omission of feedback, we have still been able to classify the dom-

inant modes and outcomes of stellar spin dynamics in LK systems.

4.8.2 Primordial misalignment

In this paper we have focused solely on stellar spin dynamics in systems that

have no initial spin-orbit misalignment. However, since several ways of gener-

ating primordial misalignment have been proposed (Bate et al., 2010; Batygin,

2012; Batygin and Adams, 2013; Lai, 2014; Lai et al., 2011; Spalding and Batygin,

2014), the dynamics of initially misaligned systems are of potential interest. A

thorough exploration of these dynamics may merit a future paper.

We can state, however, that we believe the ideas outlined in this work, and

particularly the importance of the parameters Ā0 and Nmax,0, are still applicable

to initially misaligned systems. The fate of the system should still be determined

by the initial t = 0 phase space of the system and where in that phase space

the system is initialized. For example, for trajectories starting anywhere inside

the N = 0 center island (cf. Fig. 4.4 top panel), the final outcome should be

bimodal just like it is for initially aligned systems - however, the peaks of the

bimodal distribution would lie closer to 90◦ due to the smaller initial area of the

trajectory. In Anderson et al. (2015), in prep, we demonstrate that this is the

case.

Thus, the guidelines developed here for the special case of initially aligned

systems can likely be easily generalized to systems with arbitrary initial mis-
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alignments and phases.

4.8.3 Summary of key findings

The goal of this work has been to explore in detail, and classify, the various

regimes of stellar spin dynamics driven by planets undergoing Lidov-Kozai mi-

gration. Whereas in previous work (SL15) we analyzed solely the idealized non-

dissipative LK system, and only in the adiabatic regime, here we generalize our

analysis to include the effects of short-range forces and tidal dissipation, and

consider all possible dynamical regimes. The only simplifying assumption we

make is the omission of feedback due to the stellar quadrupole onto the planet’s

orbital dynamics. We also consider solely cases with zero initial spin-orbit mis-

alignment

We find that, in general, the behavior of a system with a given set of initial

conditions, planet mass, and stellar spin rate is governed primarily by two pa-

rameters: Nmax, which compares the average precession frequency of the stellar

spin vector Ŝ with the LK eccentricity oscillation timescale; and Ā, which com-

pares the average precession frequency of the stellar spin vector Ŝ with the rate

of change of the orbital angular momentum vector L̂.

In the presence of tides, Nmax and Ā vary slowly with time, but the fate of

the system is entirely determined by the values of these parameters at t = 0 (i.e.

during the first LK cycle). We find that when Ā0 <∼ 1 and Nmax,0 � 1, the final

spin-orbit misalignment distribution is bimodal, and thus the system is equally

as likely to attain low final misalignment as high misalignment. When Ā0 >∼ 1

and Nmax,0 <∼ 0.5, the system experiences “stationary adiabatic” behavior and
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cannot achieve high misalignments. When When Ā0 >∼ 1 and Nmax,0 >∼ 0.5,

the system is either chaotic or experiences “adiabatic advection”, wherein it can

slowly accumulate a modest amount of spin-orbit misalignment (never more

than 90◦). The chaotic regime is typically restricted to lower values of Ā0.
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CHAPTER 5

VISCOELASTIC TIDAL DISSIPATION IN GIANT PLANETS AND

FORMATION OF HOT JUPITERS THROUGH HIGH-ECCENTRICITY

MIGRATION

5.1 Abstract

We study the possibility of tidal dissipation in the solid cores of giant planets

and its implication for the formation of hot Jupiters through high-eccentricity

migration. We present a general framework by which the tidal evolution of

planetary systems can be computed for any form of tidal dissipation, charac-

terized by the imaginary part of the complex tidal Love number, Im[k̃2(ω)], as

a function of the forcing frequency ω. Using the simplest viscoelastic dissipa-

tion model (the Maxwell model) for the rocky core and including the effect of

a nondissipative fluid envelope, we show that with reasonable (but uncertain)

physical parameters for the core (size, viscosity and shear modulus), tidal dis-

sipation in the core can accommodate the tidal-Q constraint of the Solar System

gas giants and at the same time allows exoplanetary hot Jupiters to form via

tidal circularization in the high-e migration scenario. By contrast, the often-

used weak friction theory of equilibrium tide would lead to a discrepancy be-

tween the Solar System constraint and the amount of dissipation necessary for

high-e migration. We also show that tidal heating in the rocky core can lead to

modest radius inflation of the planets, particularly when the planets are in the

high-eccentricity phase (e ∼ 0.6) during their high-e migration. Finally, as an in-

The contents of this chapter were published in MNRAS as "Viscoelastic Tidal Dissipation in
Giant Planets and Formation of Hot Jupiters Through High-Eccentricity Migration" (Storch and
Lai, 2014)

115



teresting by-product of our study, we note that for a generic tidal response func-

tion Im[k̃2(ω)], it is possible that spin equilibrium (zero torque) can be achieved

for multiple spin frequencies (at a given e), and the actual pseudosynchronized

spin rate depends on the evolutionary history of the system.

5.2 Introduction

In recent years high-eccentricity migration has emerged as one of the dominant

mechanisms responsible for the formation of hot Jupiters. In this mechanism,

a gas giant which is formed beyond the snow line is first excited into a state of

very high eccentricity (e >∼ 0.9) by few-body interactions, either via dynamical

planet-planet scatterings (Chatterjee et al., 2008; Jurić and Tremaine, 2008; Rasio

and Ford, 1996; Weidenschilling and Marzari, 1996; Zhou et al., 2007) or/and

secular interactions between multiple planets, or Lidov-Kozai effect induced by

a distant companion (Dawson and Murray-Clay, 2013; Fabrycky and Tremaine,

2007; Katz et al., 2011; Nagasawa et al., 2008; Naoz et al., 2011, 2012, 2013; Wu

and Lithwick, 2011; Wu and Murray, 2003; Wu et al., 2007). Due to the high

eccentricity, the planet passes quite close to its host star at periastron, and tidal

dissipation in the planet extracts energy from the orbit, leading to inward mi-

gration and circularization of the planet’s orbit.

Tidal effects on the orbital evolution of binaries are often discussed using the

weak friction theory of equilibrium tides (Alexander, 1973; Eggleton et al., 1998;

Hut, 1981), according to which the rate of decay of the semi-major axis (a) for a

pseudosynchronized planet can be written as∣∣∣∣ ȧa
∣∣∣∣ = 6k2τ

(
GM?

a3
F

)(
Rp

aF

)5
M?

Mp

√
aF
a
F (e). (5.1)
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Here Mp and Rp are the the mass and radius of the planet, M? is the mass of the

central star, aF ≡ a(1 − e2) is the final circularization radius (assuming orbital

angular momentum conservation), k2 the tidal Love number, τ is the tidal lag

time (assumed constant in the weak friction theory), and F (e) is a function of

eccentricity of order (1 − 10) and given by F (e) = f1(e) − f 2
2 (e)/f5(e), where

f1, f2 and f5 are given by Eq. (11) of Hut (1981). By requiring that the high-e

migration happens on a timescale less than 10 Gyrs we can place a constraint on

τ : (
GM?

a3
F

)1/2

τ ∼> 3× 10−5
( a

5AU

)1/2 ( aF
0.06AU

)6

×
(
M?

M�

)−3/2
Mp

MJ

(
Rp

RJ

)−5(
k2

0.38

)−1

. (5.2)

Note that instead of τ , tidal dissipation is often parameterized by the tidal qual-

ity factor Q ≡ (τω)−1, where ω is the tidal forcing frequency. Thus, the above

constraint on τ translates to Q <∼ 3× 104 at ω ∼ (GM?/a
3
F )1/2 ∼ 2π/(5 d) [for the

canonical parameters adopted in Eq. (5.2)]. A similar constraint can be obtained

by integration over the planets’ orbital evolution (Fabrycky and Tremaine, 2007;

Hansen, 2012; Leconte et al., 2010; Matsumura et al., 2010; Naoz et al., 2012;

Socrates et al., 2012a).

The tidal Q for Solar System giant planets can be measured or constrained

by the tidal evolution of their satellites (Goldreich and Soter, 1966). For Jupiter,

Yoder and Peale (1981) derived a bound 2× 10−7 < k2/QJ < 6× 10−6 based on

Io’s long-term orbital evolution (particularly the eccentricity equilibrium), with

the upper limit following from the limited expansion of satellite orbits. Recent

analysis of the astrometric data of Galilean moons gave k2/QJ = (1.1±0.2)×10−5

for the current Jupiter-Io system (Lainey et al., 2009), corresponding to QJ '

3.5 × 104 for the conventional value of the Love number k2 = 0.38 (Gavrilov
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and Zharkov, 1977). With Jupiter’s spin period 9.9 hrs and Io’s orbital period

42.5 hrs, the tidal forcing frequency on Jupiter from Io is ω = 2π/(6.5 hr), and

the tidal lag time is then τJ = (QJω)−1 ' 0.1 s.

For Saturn, theoretical considerations based on the long-term evolution of

Mimas and other main moons (with the assumption that they formed above the

synchronous orbit 4.5 Gyr ago) lead to the constraint 3×10−6 < k2/QS < 2×10−5

(Peale, 1999; Sinclair, 1983). However, using astrometric data spanning more

than a century, Lainey et al. (2012) found a much larger k2/QS = (2.3±0.7)×10−4,

corresponding to QS = (1 − 2) × 103 for k2 = 0.34; they also found that QS

depends weakly on the tidal period in the range between 2π/ω = 5.8 hrs (Rhea)

and 7.8 hrs (Enceladus).

Assuming that extra-solar giant planets are close analogs of our own gas gi-

ants, we can ask whether the aforementioned empirical constraints on k2/Q for

Jupiter and Saturn are compatible with the extra-solar constraint [see Eq. 5.2].

The difference between the two sets of constraints is the tidal forcing fre-

quencies: For example, the Jupiter-Io constraint involves a single frequency

(P = 6.5 hrs), while high-e migration involves tidal potentials of many har-

monics, all of them with periods longer than a few days. Socrates et al. (2012a)

showed that the two sets of constraints are incompatible with the weak friction

theory [see also Naoz et al. (2012)]: In order for hot Jupiters to undergo high-e

migration within the age of their host stars, their required tidal lag times must

be more than an order of magnitude larger than the Jupiter-Io constraint.

Tidal dissipation in giant planets is complex, and depends strongly on the

internal structure of the planet, such as the stratification of the liquid enve-

lope and the presence and properties of a solid core. There have been some
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attempts to understand the physics of tidal Q in giant planets [see Ogilvie and

Lin (2004) for a review]. It has long been known (Goldreich and Nicholson,

1977) that simple turbulent viscosity in the fluid envelopes of giant planets is

many orders of magnitude lower than required by observations. Ioannou and

Lindzen (1993a,b) considered a prescribed model of Jupiter where the envelope

is not fully convective (contrary to the conventional model where the envelope

is neutrally buoyant to a high degree; see Guillot (2005)) and showed that the

excitation and radiative damping of gravity waves in the envelope provide ef-

ficient tidal dissipation only at specific “resonant” frequencies. Lubow et al.

(1997) examined similar gravity wave excitations in the radiative layer above

the convective envelope of hot Jupiters. So far the most sophisticated study

of dynamical tides in giant planets is that by Ogilvie and Lin (2004) [see also

Goodman and Lackner (2009); Ogilvie (2009, 2013)], who focused on the tidal

forcing of inertial waves (short-wavelength disturbances restored primarily by

Coriolis force) in the convective envelope of a rotating planet [see Ivanov and

Papaloizou (2007); Papaloizou and Ivanov (2010) for highly eccentric orbits, and

Wu (2005) for a different approach]. They showed that because of the rocky

core, the excited inertial waves are concentrated on a web of “rays”, leading

to tidal dissipation which depends on the forcing frequency in a highly erratic

way. The tidalQ obtained is typically of order 106−7. It remains unclear whether

this mechanism can provide sufficient tidal dissipation compared to the obser-

vational constraints.

The possibility of core dissipation in giant planets was first considered by

Dermott (1979) but has not received much attention since. Recently, Remus et al.

(2012b) showed that dissipation in the solid core could in principle satisfy the

constraints on tidal Q obtained by Lainey et al. (2009) for Jupiter and by Lainey
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et al. (2012) for Saturn.

In this paper, we continue the study of tidal dissipation in the solid core of

giant planets and examine its consequences for the high-e migration scenario

and for the thermal evolution of hot Jupiters. In section 5.3 we present the gen-

eral tidal theory which may be used with any tidal response model. In section

5.4 we discuss a simple viscoelastic tidal response model and its range of ap-

plicability. In section 5.5 we use the general theory of section 5.3 in conjunction

with the model of section 5.4 to compute high-e migration timescales and com-

pare with the weak friction theory. We also examine the effect of tidal heating

in the core for the radius evolution of the planets. We summarize our findings

and conclude in section 5.6.

5.3 Evolution of Eccentric Systems with General Tidal Re-

sponses

Here we formulate the tidal evolution equations for eccentric binary systems.

These equations can be applied to any tidal response model, where the complex

Love number (defined below) is an arbitrary function of the tidal forcing fre-

quency [see also Efroimsky and Makarov (2013); Mathis and Le Poncin-Lafitte

(2009); Remus et al. (2012b) for similar formalisms]. This formulation is valid as

long as the responses of the body to different tidal components are independent

of each other.

We consider a planet of mass Mp, radius Rp and rotation rate Ωs (assumed

to be aligned with the orbital angular momentum axis), moving around a star
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(mass M?) in an eccentric orbit with semi-major axis a and mean motion fre-

quency Ω. The tidal potential exerted on the planet by the star is given by

U(r, t) = −GM?

∑
m

W2mr
2

D(t)3
e−imΦ(t)Y2m(θ, φ), (5.3)

where (r, θ, φ) is the position vector (in spherical coordinates) relative to the cen-

ter of mass of the planet, D(t) and Φ(t) are the time-dependent separation and

phase of the orbit, and m = 0,±2, with W20 = −(π/5)1/2 and W2±2 = (3π/10)1/2.

The potential U(r, t) can be decomposed into an infinite series of circular har-

monics:

U(r, t) = −
∑
m,N

UmNr
2Y2m(θ, φ)e−iNΩt, (5.4)

where N ∈ (−∞,∞) and

UmN ≡
GM?

a3
W2mFmN(e), (5.5)

with FmN(e) being the Hansen coefficient (e.g., called XN
2m in Murray and Der-

mott (2000)), given by

FmN(e) =
1

π

∫ π

0

cos [N (Ψ− e sin Ψ)−mΦ(t)]

(1− e cos Ψ)2 dΨ, (5.6)

with

cos Φ(t) =
cos Ψ− e

1− e cos Ψ
. (5.7)

Each harmonic of the tidal potential produces a perturbative response in the

planet, expressible in terms of the Lagrangian displacement ξmN and the Eule-

rian density perturbation δρmN . These responses are proportional to the dimen-

sionless ratio, UmN/ω2
0 = (M?/Mp)(Rp/a)3W2mFmN , where ω0 ≡ (GMp/R

3
p)1/2 is

the dynamical frequency of the planet. Without loss of generality, we can write
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the tidal responses as (Lai, 2012)

ξmN(r, t) =
UmN
ω2

0

ξ̄mN(r, θ)eimφ−iNΩt, (5.8)

δρmN(r, t) =
UmN
ω2

0

δρ̄mN(r, θ)eimφ−iNΩt, (5.9)

with

δρmN = −∇ · (ρξmN). (5.10)

Note that δρ̄mN and ξ̄mN are in general complex functions (implying that the

tidal response is phased-shifted relative to the tidal potential), and they depend

on the forcing frequency ωmN of each harmonic in the rotating frame of the pri-

mary,

ωmN ≡ NΩ−mΩs. (5.11)

Given the Eulerian density perturbation, we can obtain the perturbation to the

gravitational potential of the planet, δΦmN , by solving the Poisson equation,

∇2δΦmN = 4πGδρmN . We define the dimensionless Love number k̃mN2 as the

ratio of δΦmN and the (mN)-component of the tidal potential [U(r, t)]mN =

−r2UmNY2m(θ, φ) exp(−iNΩt), evaluated at the planet’s surface:

k̃mN2 ≡ δΦmN

[U(r, t)]mN

∣∣∣∣∣
r=Rp

. (5.12)

Note that, just as δρmN is complex, so in general is k̃mN2 . We find that

k̃mN2 =
4π

5

1

MpR2
p

∫
δρ̄mN(r, θ)eimφr2Y ∗2md

3x. (5.13)

We now have all the information necessary to calculate the time-averaged

torque and energy transfer rate (from the orbit to the planet):

T = Re

〈∫
d3x δρ(r, t) r× [−∇U∗(r, t)]

〉
, (5.14)

Ė = Re

〈∫
d3x ρ(r)

∂ξ(r, t)

∂t
· [−∇U∗(r, t)]

〉
, (5.15)
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where 〈 〉 denotes time averaging. After plugging in the ansatz for ξ and δρ

[Eqs. (5.8)-(5.9)] and the expression for k̃mN2 [Eq. (5.13)], we find

Tz =
5

4π
T0

∑
m,N

m [W2mFmN(e)]2 Im(k̃mN2 ), (5.16)

Ė =
5

4π
T0Ω

∑
m,N

N [W2mFmN(e)]2 Im(k̃mN2 ), (5.17)

where T0 ≡ G (M?/a
3)

2
R5

p. The tidal evolution equations for the planet’s spin

Ωs, the orbital semi-major axis a and the eccentricity e are

Ω̇s =
Tz
I
, (5.18)

ȧ

a
= − 2aĖ

GM?Mp

, (5.19)

eė

1− e2
= − aĖ

GM?Mp

+
Tz
L
, (5.20)

where I is the moment of inertia of the planet andL = M?Mp [Ga(1− e2)/(M? +Mp)]
1/2

is the orbital angular momentum.

As noted before, k̃mN2 depends on the forcing frequency ωmN = NΩ − mΩs

and physical properties of the planet. We can write k̃mN2 = k̃2(ωmN). In general,

given a model for k̃2(ω), the sum over (mN) must be computed numerically.

Note that Im(k̃mN2 ) is related to the often-defined tidal quality factor Q by

Im(k̃mN2 ) ≡
(
k2

Q

)
mN

, (5.21)

with k2 the usual (real) Love number, except that in our general case (k2/Q)mN

is for a specific (mN)-tidal component.

In the special case of the weak friction theory of equilibrium tide* , one as-

sumes Im[k̃2(ω)] = k2τω, with k2 and the lag time τ being independent of the

*Note that for equilibrium tides in general, the tidal response Im[k̃2(ω)] does not have to be
a linear function of ω (i.e., constant lag time). For example, Remus et al. (2012a) showed that for
convective stars/planets, Im[k̃2(ω)] is independent of ω (i.e., constant lag angle) when ω exceeds
the convective turnover rate.
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frequency ω. In this case, the sum over (mN) can be carried out analytically,

giving the usual expressions (Alexander, 1973; Hut, 1981):

Tz =
3T0 Ω k2 τ

(1− e2)6

[
f2 − (1− e2)3/2f5

Ωs

Ω

]
, (5.22)

Ė =
3T0 Ω2 k2 τ

(1− e2)15/2

[
f1 − (1− e2)3/2f2

Ωs

Ω

]
, (5.23)

where f1, f2, and f5 are functions of eccentricity given by (Hut 1981)

f1(e) = 1 +
31

2
e2 +

255

8
e4 +

185

16
e6 +

25

64
e8, (5.24)

f2(e) = 1 +
15

2
e2 +

45

8
e4 +

5

16
e6, and (5.25)

f5(e) = 1 + 3e2 +
3

8
e4. (5.26)

5.4 Viscoelastic Dissipation in Giant Planets with Rocky Cores

We now discuss a theoretical model of k2(ω) for giant planets based on viscoelas-

tic dissipation in rocky cores. We consider first a homogeneous solid core, and

subsequently introduce a homogeneous non-dissipative liquid envelope.

5.4.1 Viscoelastic Solid Core

The rocky/icy core of a giant planet can possess the characteristics of both elastic

solid and viscous fluid, depending on the frequency of the imposed periodic

shear stress or strain. Dissipation in rocks arises from thermally activated creep

processes associated with the diffusion of atoms or the motion of dislocations

when the rocks are subjected to stress. We use the simplest phenomenological

model, the Maxwell model, to describe such viscoelastic materials (Turcotte and
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Schubert, 2002). The model contain two free parameters, the shear modulus

(rigidity) µ and viscosity η. Other rheologies are possible (Henning et al., 2009),

but contain more free parameters and are not warranted at present given the

large uncertainties associated with the solid cores of giant planets.

The incompressible constitutive relation of a Maxwell solid core takes the

form

ε̇ij =
1

2µ
σ̇ij +

1

2η
σij, (5.27)

where εij and σij are strain and stress tensors, respectively, and a dot denotes

time derivative. For periodic forcing εij, σij ∝ e−iωt, the complex shear modulus,

µ̃ ≡ σij/(2εij), is given by

µ̃ =
ωµη

ωη + iµ
=

µ

1 + i(ωM/ω)
, (5.28)

where the Maxwell frequency is

ωM ≡ µ/η. (5.29)

Clearly, the core behaves as an elastic solid (with µ̃ ' µ) for ω � ωM , and as a

viscous fluid (with µ̃ ' −iωη) for ω � ωM .

Consider a homogeneous rocky core (mass Mc, radius Rc and density ρc)

with a constant µ̃. When the tidal forcing frequency ω is much less than

the dynamical frequency of the body, i.e., when ω � (GMc/R
3
c)

1/2 and ω �

(µ/ρcR
2
c)

1/2, the tidal Love number in the purely elastic case (Im[µ̃] = 0) can be

obtained analytically (Love, 1927). Following Remus et al. (2012b) we invoke

the correspondence principle (Biot, 1954), which allows us to simply replace the

real shear modulus in the elastic solution by the full complex shear modulus in

order to obtain the viscoelastic solution, yielding

k̃2c =
3

2

1

1 + µ̄
, (5.30)
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where µ̄ is the body’s (dimensionless) effective rigidity

µ̄ ≡ µ̄1 + iµ̄2 ≡
19µ̃

2β
, (5.31)

with β ≡ ρcgcRc and gc = GMc/R
2
c . Thus we have

Im(k̃2c) =
57ωη

4β

[
1 +

(
ωη

µ

)2(
1 +

19µ

2β

)2
]−1

. (5.32)

Note that Im(k̃2c) is a non-monotonic function of ω (see Fig. 5.1, top panel). For

ω � ωM , we have Im(k̃2c) ' 57ωη/(4β); for ω � ωM , we have Im(k̃2c) ∝ ω−1.

For a given core model, the maximum

Im(k̃2c)max =
3µ̂

4(1 + µ̂)
(5.33)

is attained at ω = ωM/(1 + µ̂), where µ̂ ≡ 19µ/(2β).

5.4.2 Application to a giant planet with a rocky core

In order to apply the results of section 5.4.1 to a gas giant, we introduce a non-

dissipative fluid envelope on top of the rocky body. While the fluid envelope

does not, itself, dissipate energy, it is deformed by the tidal potential and inter-

acts with the central solid body by exerting variable pressure on its surface, thus

creating additional stress. We consider a core of radius Rc and density ρc within

a planet of radius Rp, with a fluid envelope of density ρF . We then use the an-

alytical expression of Remus et al. (2012b), who used Dermott’s 1979 solution

for the effect of a liquid envelope on the deformation of an elastic core, together

with the correspondence principle (Biot, 1954), to calculate the resulting modi-

fied Love number of the core, defined as the ratio of the potential generated by
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the deformed core and the tidal potential, evaluated at the core radius (Rc):

k̃2c =
1

(B + µ̄1)2 + µ̄2
2

{[
(B + µ̄1)

(
C +

3

2α
µ̄1

)

+
3

2α
µ̄2

2

]
− iADµ̄2

}
, (5.34)

where (Remus et al., 2012b)

α = 1 +
5

2

ρc
ρF

(
Rc

Rp

)3 (
1− ρF

ρc

)
,

A =

(
1− ρF

ρc

)(
1 +

3

2α

)
,

B = 1− ρF
ρc

+
3

2

ρF
ρc

(
1− ρF

ρc

)
− 9

4α

(
Rc

Rp

)5(
1− ρF

ρc

)2

,

C =
3

2

(
1− ρF

ρc

) (
1− ρF

ρc
+

5

2α

)
+

9

4α

(
Rc

Rp

)5 (
1− ρF

ρc

)2

,

D =
3

2

(
1− ρF

ρc

) [
1 +

3

2α

(
Rc

Rp

)5
]
.

Since in our model, all the dissipation happens in the core, we then have,

from section 5.3,

Ė =
5

4π

(
GM2

?R
5
c

a6

)
Ω
∑
m,N

N [W2mFmN(e)]2 Im[k̃mN2c ], (5.35)

where k̃mN2c = k̃2c(NΩ − mΩs). However, rather than keep the explicit depen-

dence on Rc, we prefer to re-cast the equation such that all core parameters

appear in k̃2 only. We write,

Ė =
5

4π

(
GM2

?R
5
p

a6

)
Ω
∑
m,N

N [W2mFmN(e)]2 Im[k̃mN2 ], (5.36)

where

k̃2(ω) ≡
(
Rc

Rp

)5

k̃2c(ω). (5.37)

This (complex) Love number is now, effectively, the Love number for the entire

planet rather than for the core only.
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5.4.3 The specific case of Jupiter

The size of the rocky/icy core of Jupiter is uncertain, with estimates in the range

of ∼ (0 − 10)M⊕ (Guillot, 2005) and ∼ (14 − 18)M⊕ (Militzer et al., 2008). The

viscous and elastic properties of materials at the high pressure (∼ 40 Mbar)

found at the center of giant planets are also poorly known. We mention here

values of η and µ for several materials to give the reader an idea for the range of

parameter space involved. The inner core of the Earth has a measured viscosity

of η ∼ 108±3 bar · s (Jeanloz, 1990) and a shear modulus of µ ∼ 1500 kbar, while

the central pressure is ∼ 3600 kbar (Montagner and Kennett, 1996). In contrast,

the Earth’s mantle has η ∼ 1015 − 1018 bar · s, depending on depth (Mitrovica

and Forte, 2004), and shear modulus similar to the core. Icy materials have

η ∼ 106−109 bar · s, and µ ∼ 50 kbar (Goldsby and Kohlstedt, 2001; Poirier et al.,

1981). Evidently, η in particular has a very large dynamical range, and since very

little is known about the interior of Jupiter, all of this range is hypothetically

accessible. In addition to varying η and µ, we may also vary the size of the core

Rc and the core density ρc.

Figure 5.1 presents three models for the tidal response Im(k̃2c) of Jupiter’s

rocky core (upper panel), and the corresponding effective tidal response of the

entire planet Im(k̃2) (lower panel). For each curve, different values of η and Rc

were chosen such that the Jupiter-Io tidal dissipation constraint is satisfied (see

also Fig. 10 of Remus et al. (2012b). Also plotted is the weak friction theory,

similarly calibrated. For all the theoretical curves of Figure 5.1, we choose to fix

µ and ρc, due to their smaller dynamical ranges. We note that of the remaining

parameters, changing η acts primarily to alter the transition frequency ωM ∼

µη−1, effectively moving the curve horizontally left-right, while changing Rc
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Figure 5.1: Theoretical curves for the tidal Love number of a Jupiter-mass planet
as a function of the tidal forcing frequency, for several values of Rc/Rp and η,
each calibrated to satisfy the Jupiter-Io constraint. Top: The intrinsic Love num-
ber of the rocky core with (blue lines) and without (red lines) the presence of
liquid envelope. Bottom: The effective Love number for the entire planet with
fluid envelope. The density ratio of the core and envelope is ρc/ρF = 5 and the
core rigidity is µ = 485 kbar for all models. The other model parameters are as
follows. Model 1 (blue solid line): Rc/Rp = 0.13, η = 4.4× 109 bar · s; Model 2 (blue
long-dashed line): Rc/Rp = 0.19, η = 2 × 1010 bar · s; Model 3 (blue short-dashed
line): Rc/Rp = 0.13, η = 3.3 × 108 bar · s. Green solid line: weak friction theory
with τ = 0.06 s (the lag time obtained using the value of k2/Q from Lainey et
al. (2009) and assuming k2 = 0.38).
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effectively moves the curve up-down due to the strong dependence of k̃2 on

Rc/Rp.

From Figure 5.1, it is evident that the use of weak friction theory, which

due to having only one parameter needs only one data point to be completely

constrained, can lead to strong over- or under- estimation of tidal dissipation at

different frequencies, as compared to more realistic models.

5.5 High-eccentricity migration of a giant planet with a rocky

core

5.5.1 Orbital Evolution

We now compute the rates of high-e migration for a giant planet with a rocky

core for different viscoelastic dissipation models depicted in Fig. 5.1, and com-

pare the results with weak friction theory. We numerically carry out the sums

in Eqs. (5.16)-(5.17) for different values of orbital eccentricity and a fixed final

semi-major axis, i.e., the semi-major axis a and eccentricity e always satisfy

a(1 − e2) ≡ aF =constant, corresponding to a final circular orbital period of

5 days.

Since the timescale for changing the planet’s spin is much shorter than the

orbital evolution time, we assume that the planet is in the equilibrium spin state

(Tz = 0) at all times. For the weak friction theory, the result is [see Eq. (5.22)]

Ωps/Ωperi = (1 + e)−3/2f2/f5, where Ωperi = Ω/(1 − e)3/2 is the orbital frequency

at the pericenter. For general viscoelastic models, we set the right-hand-side
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Figure 5.2: Ratio of the pseudosynchronized spin frequency Ωps to the pericenter
frequency Ωperi for each of the viscoelastic models of Figure 5.1, as well as for
the (analytical) weak friction model. Each blue curve corresponds to one of the
Maxwell model curves depicted in Fig. 5.1. The green curve shows the result of
the weak friction theory.

of Eq. (5.16) to 0 and numerically solve for the equilibrium spin rate Ωps. The

results are shown in Fig. 5.2. We note that while for the model parameters con-

sidered in Figs. 5.1 and 5.2, there exists a single Ωps for a given e (for a given

model), as in the weak friction theory, for other model parameters where the

torque is created by a primarily elastic rather than viscous response (ω ∼> ωM ), it

is possible to find multiple spin frequencies for which Tz = 0, some of which are

resonant in nature, for a given e. We discuss this interesting phenomenon in the

Appendix.

Figures 5.3 and 5.4 present the results of the orbital evolution for different

viscoelastic tidal dissipation models. While all these models satisfy the same

Jupiter-Io tidal Q constraint as the weak friction theory, the predicted high-e

migration rate can be easily larger, by a factor of 10 or more, than that predicted

by the weak friction theory. For example, while it takes ∼ 100 Gyrs to complete

the orbital circularization in the weak friction theory, only 10 Gyrs is needed in

131



Model 3

Model 1

Model 2

0.02 0.05 0.10 0.20 0.50

0.5

1.0

5.0

10.0

50.0

100.0

1!e

a"
!a
"

w
e
a
k

Figure 5.3: Ratio of the orbital decay rate ȧ for different viscoelastic tidal dissipa-
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Model 1 and only ∼ 2 Gyrs is needed in Model 2.

5.5.2 Tidal heating of giant planets during migration

Many hot Jupiters are found to have much larger radii than predictions based on

“standard” gas giant theory (Baraffe et al., 2010). A number of possible expla-

nations for the “radius inflation” have been suggested, including tidal heating

(Bodenheimer et al., 2001, 2003; Ibgui et al., 2010; Leconte et al., 2010; Miller

et al., 2009), the effect of thermal tides (Arras and Socrates, 2010; Socrates, 2013),

enhanced envelope opacity (Burrows et al., 2007), double-diffusive envelope

convection (Chabrier and Baraffe, 2007; Leconte and Chabrier, 2012) and Ohmic

dissipation of planetary magnetic fields (Batygin and Stevenson, 2010; Baty-

gin et al., 2011; Huang and Cumming, 2012; Menou, 2012; Perna et al., 2010;

Rauscher and Menou, 2013; Wu and Lithwick, 2013). It is possible that more

than one mechanism is needed to explain all of the observed radius anomalies

of hot Jupiters (Fortney and Nettelmann, 2010; Spiegel and Burrows, 2013).

Several papers have already pointed out the potential importance of tidal

heating in solving the radius anomaly puzzle (see above for references). In par-

ticular, Leconte et al. (2010) studied the combined evolutions of the planet’s orbit

(starting from high eccentricity) and thermal structure including tidal heating,

and showed that tidal dissipation in the planet provides a substantial contribu-

tion to the planet’s heat budget and can explain some of the moderately bloated

hot Jupiters but not the most inflated objects (Ibgui et al., 2010; Miller et al.,

2009). However, all these studies were based on equilibrium tide theory with a

parameterized tidal quality factor Q or lag time, and assume that the heating is
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distributed uniformly across the planet.

Here we study the heating of proto-hot-Jupiters via tidal dissipation in the

core. To model this effect, we use the MESA code (Paxton et al., 2011, 2013) to

evolve the internal structure of giant planets in conjunction with the orbital evo-

lution starting from high eccentricity. We create a zero-age Jupiter-mass giant

planet (initially hot and inflated) with an inert rocky core, for which we can pre-

scribe a time-varying luminosity. Assuming the core is in thermal equilibrium

with its surroundings, we consider the core luminosity to be equal to Ė as given

by Eq. (5.17) (with Ωs = Ωps such that Tz = 0). We assume the planet starts at

a high eccentricity of e = 0.9945 and circularizes to a 5-day orbit, while con-

serving orbital angular momentum (so that aF = a(1 − e2) at all times). These

assumptions enable us to calculate Ė(t) and observe its effect on the radius of

the planet.

Figure 5.5 presents the planet heating rate and radius vs age curves. Evi-

dently, it is possible to inflate a proto-hot-Jupiter by up to 40% via tidal heating

in the core. However, this happens early in the planet’s evolution, around ec-

centricities of 0.6, when the heating rate is largest. By the time the planet’s

orbit has circularized (e <∼ 0.05), its radius is only ∼ 10% larger than the zero-

temperature planet and continues to decline over time. Therefore, regardless

of the details of the tidal models, it appears that tidal heating cannot fully ex-

plain the population of observed hot Jupiters with significant radius inflation.

Nevertheless, tidal effects can significantly delay the radius contraction of gas

giants. By keeping the planet somewhat inflated until (possibly) another effect

due to proximity to the host star takes over, tidal dissipation may still play an

important role in the creation of inflated hot Jupiters.
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Figure 5.5: Top: Core luminosity due to viscoelastic tidal dissipation in a Jupiter-
mass gas giant. The blue solid curve corresponds to Model 1 of Fig. 5.1, and the
blue long-dashed curve corresponds to Model 2 of Fig. 5.1. Bottom: Evolution
of radius vs time for each of the models (top), assuming an initial eccentricity of
0.9945 and a final circularized orbital period of 5 days. The red solid curve has
no tidal heating and asymptotes to the zero-temperature radius at later times.
Black dots and labels on each curve denote when the particular planet model
passes through that value of eccentricity in its orbital evolution. Note that since
Model 2 is more dissipative than Model 1, the maximum heating rate and radius
inflation (around e = 0.6) occur earlier in time than Model 1.
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Interestingly, these cooling curves suggest that if tidal dissipation in the core

is indeed strong enough to play a significant role in circularizing the planet’s

orbit, as we have shown to be possible in this paper, we may expect to observe

a population of gas giants (proto-hot-Jupiters) in wide, eccentric orbits, which

are nevertheless inflated more than expected (Dawson and Murray-Clay, 2013;

Socrates et al., 2012b).

5.6 Conclusion

The physical mechanisms for tidal dissipations in giant planets are uncertain.

Recent works have focused on mechanisms of dissipation in the planet’s fluid

envelope, but it is not clear whether they are adequate to satisfy the constraints

from the Solar System gas giants and the formation of close-in exoplanetary

systems via high-e migration.

In this paper, we have studied the possibility of tidal dissipation in the solid

cores of giant planets. We have presented a general framework by which the ef-

fects of tidal dissipation on the spin and orbital evolution of planetary systems

can be computed. This requires only one input - the imaginary part of the com-

plex tidal Love number, Im[k̃2(ω)], as a function of the forcing frequency ω. We

discussed the simplest model of tidal response in solids - the Maxwell viscoelas-

tic model, which is characterized by a transition frequency ωM , above which the

solid responds elastically, below - viscously. Using the Maxwell model for the

rocky/icy core, and including the effect of a non-dissipative fluid envelope, we

have demonstrated that with a modest-sized rocky core and reasonable (but

uncertain) physical core parameters, tidal dissipation in the core can account
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for the Jupiter-Io tidal-Q constraint (Remus et al., 2012b) and at the same time

allows exoplanetary hot Jupiters to form via tidal circularization in the high-e

migration scenario. By contrast, in the often-used weak friction theory of equi-

librium tide, when the tidal lag is calibrated with the Jupiter-Io constraint, hot

Jupiters would not be able to go through high-e migration within the lifetime of

their host stars.

We have also examined the consequence of tidal heating in the rocky cores

of giant planets. Such heating can lead to modest radius inflation of the planets,

particularly when the planets are in the high-eccentricity phase (e ∼ 0.6) during

their high-e migration.

As an interesting by-product of our study, we have shown that when Im(k̃2)

exhibits nontrivial dependence on ω (as opposed to the linear dependence in

the weak friction theory), there may exist multiple spin frequencies at which

the torque on the planet vanishes (see Appendix).

We emphasize that there remain large uncertainties in the physical proper-

ties of solid cores inside giant planets, including the size, density, composition,

viscosity and elastic shear modulus. These uncertainties make it difficult to

draw any definitive conclusion about the importance of core dissipation. Nev-

ertheless, our study in this paper suggests that within the range of uncertainties,

viscoelastic dissipation in the core is a possible mechanism of tidal dissipation

in giant planets and has several desirable features when confronting the current

observational constraints. Thus, core dissipation should be kept in mind as ob-

servations in the coming years provide more data on tidal dissipations in giant

planets.

137



5.7 Acknowledgments

We thank M. Efroimsky, M.-H. Lee, J. Lunine, P. Nicholson and Y. Wu for dis-

cussions and information. This work has been supported in part by NSF grants

AST-1008245, 1211061 and NASA grant NNX12AF85G.

5.8 Appendix: Spin Equilibrium/Pseudosynchronization in

Viscoelastic Tidal Models

In the weak friction theory, the tidal Love number Im(k̃2) is a linear function

of the tidal frequency ω, and thus spin equilibrium (Tz = 0) occurs at a unique

value of Ωs, termed the pseudosynchronous frequency, for a given orbital ec-

centricity e. When Im(k̃2) depends on ω in a more general way, as in the case of

viscoelastic tidal models of giant planets, it is possible that multiple solutions

for the equilibrium spin frequency Ωps exist at a given e.

The reason for the existence of multiple pseudo-synchronized spins can be

understood in simple algebraic terms. For clarity here we demonstrate how

multiple roots arise naturally even at low eccentricities. Consider Eq. (5.16),

which we rewrite here to make the dependence on spin frequency explicit:

Tz =
5

4π
T0

∑
m,N

m [W2mFmN(e)]2 Im[k̃2(NΩ−mΩs)]. (5.38)

For very low eccentricities e � 1, the Hansen coefficients FmN are negligible

for all except the following combinations of (m,N): (0, 0), (0,±1),(±2,±2), and

(±2,±3). We can then rewrite Tz as

Tz = Im[Ak̃2(2Ω− 2Ωs) +Bk̃2(3Ω− 2Ωs)], (5.39)
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Figure 5.6: Theoretical curves for the tidal Love number of a Jupiter-mass planet
as a function of the tidal forcing frequency. The blue dashed curve is the same as
Model 2 of Fig. 5.1, and the green solid curve corresponds to the weak friction
model of Fig. 5.1. The blue solid curve is a viscoelastic Maxwell model (model
4), with Rc/Rp = 0.2 and η = 4 × 1011 bar · s. In the top panel, the models are
plotted on a log-log scale, as in Fig. 5.1, while in the bottom panel we plot the
models on a linear scale to clarify how the shape of the tidal response curve
leads to resonant equilibrium spin states.
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with A and B real constants. Plugging in for k̃2 using the Maxwell model

(Eq. 5.32) (neglecting fluid envelope for simplicity), we have:

Tz = Ā
(2Ω− 2Ωs)

1 + C(2Ω− 2Ωs)2
+ B̄

(3Ω− 2Ωs)

1 + C(3Ω− 2Ωs)2
, (5.40)

where Ā, B̄, and C are constants. Thus, when solving for Ωs from Tz(Ωs) =

0, it is obvious that upon finding the least common denominator, we end up

solving a cubic equation for Ωs. The above discussion can be generalized to

higher eccentricities: the pseudosynchronized spin Ωps is determined by solving

equations of increasingly higher (always odd) degree in Ωs.

The top panel of Figure 5.7 shows the two terms on the RHS of Eq. (5.40), as

well as their sum, for the viscoelastic Model 4 of Figure 5.6 at an eccentricity of

0.13. This demonstrates the way in which multiple solutions for Ωps arise. Fur-

thermore, we see that two (out of three) of the solutions are resonant in nature:

that is, they occur, roughly, at multiples of Ω/2, where Ω is the orbital frequency.

This can be understood by considering that the viscoelastic response (Figure 5.6)

is quite sharply peaked and localized. Each term on the RHS of Eq. (5.40) van-

ishes when Ωs = Ω and 1.5Ω, respectively. Due to the sharply peaked nature of

the viscoelastic response, to which Tz is proportional, the sum of the two terms

then shows resonant crossings at both of these values.

This generalizes easily to the case of arbitrary eccentricity, where each (m,N)

harmonic of the sum for Tz (Eq. 5.38) vanishes whenNΩ−mΩs = 0. The number

and location of the resonant crossings then depends on the relative importance

of each of the harmonics; the strongest crossing is expected to occur Ωs ∼ Ωperi.

This is demonstrated in Figure 5.7 (bottom) and Figure 5.8.

Thus, the nonlinearity of the function Im[k̃2(ω)] of the viscoelastic Maxwell

model is responsible for the existence of multiple pseudosynchronized spins. As
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Figure 5.7: Tidal torque on the planet as a function of the spin frequency for dif-
ferent values of eccentricity and different tidal dissipation models. Top: Model
4 (solid blue) of Figure 5.6, for e = 0.13. The black dot-dashed and dashed
curves show the (m,N) = (±2,±2) and (±2,±3) terms of Eq. 5.40, respectively.
The red curve shows their sum. The resonant features in each of the harmonics
combine into three different zero-crossings in the sum. Bottom: Model 4 (solid)
and Model 2 (dashed) of Figure 5.6. The red curves have e = 0.8, while the blue
curves have e = 0.5. In order to fit all the curves on the same plot, we show 10Tz
for the blue solid curve, and 0.1Tz for the red dashed curve. Equilibrium spins
are determined by Tz = 0. Evidently, in the case of Model 2, the viscoelastic
response is not localized enough to permit more than one resonant solution.
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Figure 5.8: Tidal torque on the planet as a function of the ratio of spin frequency
to pericenter frequency for e = 0.8 and different tidal dissipation models. Red
solid: Model 4 of Figure 5.6; red dashed: 0.1Tz for Model 2 of Figure 5.6; green solid:
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shown in Figure 5.7 (bottom panel), there will not be multiple solutions if the

viscoelastic response is not localized enough, compared with the mean motion

frequency Ω (that is, the width of the resonant transition ∆ ∼ ωM ∼> Ω), and all

important harmonics of Tz are solidly on the viscous (linear) side of the Maxwell

curve. On the other hand, there may exist multiple solutions when ∆ ∼ ωM � Ω

and the relevant tidal forcing frequencies lie on the elastic side of the Maxwell

curve.

Finally, we note that all the resonant zero crossings of Tz are stable (nega-

tive slope), while the non-resonant crossings are necessarily unstable (positive

slope). The innermost and outermost crossings are always resonant. This phe-

nomenon is analogous to that discussed by Makarov and Efroimsky (2013), who

used a different model for viscoelastic dissipation in solid bodies to analyze the

pseudosynchronization of telluric planets. They demonstrated the presence of
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multiple equilibrium spin solutions, and showed that only the resonant solu-

tions are stable equilibria, thus concluding that the telluric planets possess no

true (non-resonant) pseudosynchronous state.

The implications of our finding may be of practical interest when it becomes

possible to measure the spin of exoplanets on eccentric orbits. We may then look

for evidence of the existence of multiple stable spin equilibria in rocky planets

or gas giants with rocky cores.

143



CHAPTER 6

ANALYTICAL MODEL OF TIDAL DISTORTION AND DISSIPATION

FOR A GIANT PLANET WITH A VISCOELASTIC CORE

6.1 Abstract

We present analytical expressions for the tidal Love numbers of a giant planet

with a solid core and a fluid envelope. We model the core as a uniform, incom-

pressible, elastic solid, and the envelope as a non-viscous fluid satisfying the

n = 1 polytropic equation of state. We discuss how the Love numbers depend

on the size, density, and shear modulus of the core. We then model the core

as a viscoelastic Maxwell solid and compute the tidal dissipation rate in the

planet as characterized by the imaginary part of the Love number k2. Our re-

sults improve upon existing calculations based on planetary models with a solid

core and a uniform (n = 0) envelope. Our analytical expressions for the Love

numbers can be applied to study tidal distortion and viscoelastic dissipation of

giant planets with solid cores of various rheological properties, and our general

method can be extended to study tidal distortion/dissipation of super-earths.

6.2 Introduction

Tidal effects play an important role in understanding many puzzles associated

with planet/exoplanet formation and evolution. One example involves high-

eccentricity migration of giant planets: tidal dissipation in the planet is respon-

The contents of this chapter were published in MNRAS as "Analytical Model of Tidal Dis-
tortion and Dissipation for a Giant Planet with a Viscoelastic Core" (Storch and Lai, 2015a)
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sible for circularizing the planet’s orbit, leading to the creation of hot Jupiters

(Correia et al., 2011; Fabrycky and Tremaine, 2007; Naoz et al., 2012; Petrovich,

2015b; Storch et al., 2014; Wu and Murray, 2003).

The levels of tidal dissipation in giant planets suggested by both Solar Sys-

tem (Goldreich and Soter, 1966; Lainey et al., 2009, 2012; Yoder and Peale, 1981)

and extrasolar (Socrates et al., 2012a; Storch and Lai, 2014) constraints cannot

easily be explained by simple viscous dissipation in the turbulent fluid envelope

(Goldreich and Nicholson, 1977). While several mechanisms based on wave

excitation and dissipation in the envelope (ocean) have been studied (Ivanov

and Papaloizou, 2007; Ogilvie, 2014; Ogilvie and Lin, 2004), it remains unclear

whether they can provide sufficient dissipation.

Dissipation in the solid cores of giants planets is another possible source

of dissipation. Previous works (Remus et al., 2012b, 2015; Storch and Lai,

2014) have employed analytical formulae for the tidal dissipation in a two-layer

planet consisting of a uniform, incompressible, viscoelastic core and a uniform

non-dissipative ocean (Dermott, 1979). These works demonstrate that, while

there are significant uncertainties in the rheologies of the solid core, it is in prin-

ciple possible for dissipation in the core to be substantial enough to account

for existing constraints, particularly the dependence of dissipation on the tidal

forcing frequency (Storch and Lai, 2014).

The advantage of analytical models for the tidal deformation lies in the use

of the “correspondence principle”, in which the analytical formulae derived for

the tidal deformation of an elastic body may be generalized to a viscoelastic body

via introduction of a complex shear modulus (Biot, 1954). This allows various

rheologies for the solid core to be employed in calculating the tidal dissipation.
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In this paper, we extend previous works by considering a fluid envelope (ocean)

of non-uniform density, rather than a uniform one. In particular, we show that

if the ocean obeys the n = 1 polytropic equation of state (P ∝ ρ2), relatively

simple analytical expressions for the tidal Love numbers can be obtained. The

n = 1 polytrope is appropriate for giant planets, as it correctly reproduces the

fact that their radii are nearly independent of their masses.

In section 6.3, we set up the analytical problem of calculating the tidal dis-

tortion in a two-layer giant planet. In section 6.4, we present the solution for the

tidal radial deformation of the core, characterized by the Love number h2c, and

the change in the self-gravity of the planet, characterized by the Love number

k2. In section 6.5 we give several examples of the uses of these formulae. We

discuss our results and conclude in section 6.6.

6.3 Setup and Schematic Solution

We consider distortion of a planet by an l = 2 tidal potential. Let the perturber

have massM? and be a distance a away. Let the planet have massMp and radius

R, and possess a solid core of radius Rc. We assume the core is incompressible,

with uniform density ρc and shear modulus µ. We model the planet’s fluid en-

velope as an n = 1 polytrope, such that its pressure (P ) and density (ρ) profiles

satisfy the relation

P (r) = Kρ(r)2, (6.1)

where K is a constant.
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6.3.1 Equilibrium Structure

In the absence of a perturber, the planet is in hydrostatic equilibrium. The

planet’s gravitational potential Φ and pressure profile P satisfy the equations

∇2Φ = 4πGρ, (6.2)

∇P = −ρ∇Φ. (6.3)

It follows that the density profile in the fluid ocean is given by

ρ(r) = ρ0
sin[q (1− r/R)]

q r/R
, (6.4)

where

q2 =
2πGR2

K
, (6.5)

ρ0 =
q2Mp

4πR3
. (6.6)

For clarity, we define ρmax to be the fluid density at r = Rc+ (just outside Rc):

ρmax ≡ ρ0
sin[q(1−Rc/R)]

qRc/R
. (6.7)

Since we demand the planet to be of massMp and radiusR, and the core to have

radius Rc, this leads to a constraint on the core-to-fluid density jump:

ρc
ρmax

=
3R2

q2R2
c

[
qRc

R
cot[q(1−Rc/R)] + 1

]
. (6.8)

In practice, for given Mp, R, ρc and Rc (or Mc), we solve for q from equations

(6.6)-(6.8). For completeness, we give the potential Φ inside the planet:

Φ(r) =


2
3πGρc(r

2 −R2
c)−

GMp

R

[
sin[q(1−Rc/R)]

qRc/R
+ 1
]
(r ≤ Rc)

−GMp

R

[
sin[q(1−r/R)]

qr/R + 1
]

(Rc ≤ r ≤ R).
(6.9)
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6.3.2 Tidal Perturbation

We now turn on the l = 2 tidal perturbation and calculate the resulting deforma-

tion of the planet. We set up the problem such that the z axis joins the centers of

the planet and the perturber. In this way, the problem has azimuthal symmetry.

The perturbing tidal potential (assumed small) is given by

U(r, θ) ≡ U(r)Y20(θ) = −
√

4π

5

GM?

a3
r2Y20(θ), (6.10)

Hence we can assume all perturbed quantities are proportional to Y20. The per-

turbed Poisson’s equation is given by

∇2δΦ = 4πGδρ, (6.11)

where δX ≡ δX(r)Y20(θ) indicates the Eulerian perturbation to the variable X ,

and the perturbed equation of hydrostatic equilibrium in the liquid layer of the

planet is given by

∇δP = −δρ∇Φ− ρ∇V , (6.12)

where V ≡ V (r)Y20(θ) ≡ δΦ +U , and ρ(r) and Φ(r) are the unperturbed density

profile and unperturbed gravitational potential as derived in the previous sub-

section. The transverse component of Eq. (6.12) is δP = −ρV , while the radial

component is (δP )′ = −δρΦ′ − ρV ′, where ′ stands for ∂/∂r. These imply that

δρ = (ρ′/Φ′)V .

Inside the core, and outside the planet, the perturbed Poisson equation re-

duces to ∇2δΦ = 0, and is easily solved, yielding δΦ = b1r
2 inside the core and

δΦ = b4r
−3 outside the planet, with b1 and b4 as yet unknown constants. In the

fluid envelope, the Poisson equation reduces to

∇2V = 4πGδρ = 4πG
ρ′

Φ′
V . (6.13)
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So far the equations in this subsection are general (valid for all envelope

equation of state). for the n = 1 EOS, P ′ = −ρΦ′ gives (ρ′/Φ′) = −1/(2K) and

we have

∇2V = −
( q
R

)2

V . (6.14)

This equation admits a standard solution in the form of spherical Bessel func-

tions (j2 and y2):

V (r) = b2 j2

(
q
r

R

)
+ b3 y2

(
q
r

R

)
(6.15)

inside the fluid envelope, with b2 and b3 constants to be determined.

The unknown constants b1, b2, b3, b4 may now be solved for by matching

boundary conditions at r = R and at r = Rc:

δΦ(R+) = δΦ(R−), (6.16)

δΦ(Rc,+) = δΦ(Rc,−), (6.17)

(δΦ′)R−
= (δΦ′)R+

= − 3

R
δΦ(R+), (6.18)

(δΦ′ + 4πGρξr)Rc,−
= (δΦ′ + 4πGρξr)Rc,+

. (6.19)

Since the fluid density vanishes at surface of planet, these introduce only one

additional unknown: the radial displacement at the core-fluid interface, ξr(Rc).

Determining ξr(Rc) requires solving for the deformation of the core, matching

the radial and transverse tractions across the core-fluid interface. The proce-

dure to follow is similar to Love’s classic solution for the deformation of an in-

compressible, uniform, self-gravitating elastic body under an external potential

(Greff-Lefftz et al., 2005; Love, 1911), with the addition of an external pressure

force due to the fluid envelope. We find the final boundary condition is given

by

19

5
µ
ξr(Rc)

Rc

= −
(
dP

dr
+ ρcgc

)
ξr (6.20)

+ (ρmax − ρc)(b1R
2
c + U),
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where gc ≡ (4/3)πGρcRc is the gravitational acceleration at r = Rc, and all

the quantities on the RHS are evaluated at r = Rc,+. Note that equation (6.20) is

valid for any envelope EOS. Together, the five boundary conditions, Eqs. (6.16) –

(6.20), can be solved for all the unknowns.

6.4 Analytical Love Number Formulae

6.4.1 Non-dissipative tide

We are interested in two dimensionless Love numbers. The first is the tidal Love

number of the planet, defined as

k2 ≡
δΦ(R)

U(R)
. (6.21)

This specifies the magnitude of the quadrupole potential produced by the dis-

torted planet, δΦ = k2U(R)(R/r)3Y20(θ) (for r > R), and therefore determines

the effect of tidal distortion on the planet’s orbit. The second is the radial dis-

placement Love number of the core, defined by

h2c ≡ −
ξr(Rc)gc
U(Rc)

. (6.22)

This specifies the shape of the inner core under the combined influences of the

external tidal field and the loading due to the fluid envelope.
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Following the schematic procedure outlined in the previous section, we find

h2c =
5

q2

(
R

Rc

)3

α
1 +

2µ̄

5
(

1− ρmax

ρc

)
 (6.23)

− 3λ

(
1− ρmax

ρc

)
−1

,

k2 =
3h2c

qα

(
Rc

R

)2(
1− ρmax

ρc

)
+

5γ

qα
− 1, (6.24)

where

µ̄ ≡ 19µ/(2ρcgcRc), (6.25)

and

α = j1(q) [χcy1(χc)− 5y2(χc)]− y1(q) [χcj1(χc)− 5j2(χc)] ,

λ = y1(q)j2(χc)− j1(q)y2(χc) , (6.26)

γ = j2(q) [χcy1(χc)− 5y2(χc)]− y2(q) [χcj1(χc)− 5j2(χc)] ,

with χc ≡ qRc/R.

6.4.2 Dissipative tide

We now consider the effects of viscous dissipation in the solid core. Accord-

ing to the correspondence principle (Biot, 1954), we may generalize the calcula-

tion of tidal distortion of a non-dissipative elastic core by adopting a complex

shear modulus µ, where the imaginary part of µ accounts for dissipation in the

viscoelastic core. In general, the complex µ depends on the tidal forcing fre-

quency ω in the rest frame of the planet, and its actual form depends on the

rheology of the solid (Henning et al., 2009; Remus et al., 2012b). Thus the com-

plex k2 = k2(ω) also depends on the forcing frequency.
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For example, assume the perturber is in a circular orbit with orbital fre-

quency Ω and the planet is spinning with frequency Ωs. The forcing frequency

is then ω = 2Ω−2Ωs. The torque on the planet and the energy transfer rate from

the orbit to the planet due to dissipation may be calculated as (Storch and Lai,

2014)

Tz =
3

2
T0 Im[k2(2Ω− 2Ωs)] , (6.27)

Ė =
3

2
T0Ω Im[k2(2Ω− 2Ωs)] , (6.28)

where T0 ≡ G(M?/a
3)2R5. See Storch and Lai (2014) for the more general case

of a perturber on an eccentric orbit.

Note that Ė includes contributions both from dissipation into heat, which

occurs solely in the viscoelastic core, and from the torque Tz that acts to synchro-

nize the rotation rate of the planet with the orbital frequency of the perturber.

Thus, the true tidal heating rate received by the core is given by

Ėheat = Ė − ΩsTz. (6.29)

6.5 Applications of Love Number Formulae

In this section we present several sample applications of the formulae derived

in the previous section. First we consider planets with non-dissipative cores,

then generalize to a complex shear modulus and compute the tidal dissipation.
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6.5.1 Non-dissipative elastic core

In Figure 6.1 we present the Love numbers for a giant planet (mass Mp = MJ ,

radius R = RJ ) with a core of constant density, ρc = 6 g cm−3, but varying size,

for several values of the core shear modulus µ. Our nominal reference value for

µ is that of undamaged rocky material at Earth-like pressures and temperatures,

µ0 = 900 kbar. Damaged rocky, or icy material can have a lower shear modu-

lus ∼ 40 kbar (Goldsby and Kohlstedt, 2001; Henning et al., 2009). However,

little is known about both the composition of giant cores and the behavior of

rocky/icy materials under high pressures and thus the value of µ is largely a

free parameter.

Based on Fig. 6.1, we note that the Love numbers generally behave as ex-

pected. Cores with higher shear moduli are harder to deform, resulting in

smaller Love numbers. Planets with cores of larger radii have more mass con-

centrated in the center, and thus k2 decreases as a function of Rc. At Rc = 0, i.e.

in the absence of a core, k2 correctly defaults to the standard value for an n = 1

envelope, (15/π2)− 1. At Rc/R ≈ 0.6, the core mass is equal to planet mass, i.e.

the envelope has zero mass but still artificially extends to R = RJ . In this case

k2 and h2c default to values for a bare core:

h2c,0 =
5

2(1 + µ̄)
, k2,0 =

3

2(1 + µ̄)

(
Rc

R

)5

. (6.30)

In Figure 6.2 we present the Love numbers for a planet with a core of con-

stant mass,Mc = 5M⊕, as a function of the core shear modulus µ, for three differ-

ent core radii. For the range of core sizes considered (up toRc/R = 0.15), chang-

ing the shear modulus by 4 orders of magnitude apparently hardly changes the

surface tidal k2 (bottom panel). Core radius plays a slightly more important
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Figure 6.1: Sample tidal Love numbers h2c (top) and k2 (bottom) for a gas giant
with mass MJ , radius RJ , and core density ρc = 6 g cm−3, as a function of core
radius for several values of core shear modulus, where µ0 = 900 kbar.

role, with smaller cores yielding smaller k2, as expected (note this is opposite

to Fig. 6.1 because here we are keeping core mass rather than core density con-

stant). Perhaps surprisingly, smaller cores are deformed more than larger cores

(top panel). This can be understood by noting that the amount of deformation

depends on µ̄, the ratio of the core shear modulus to the the gravitational rigid-

ity ρcgcRc of the core, with larger ratios yielding smaller deformations (cf. Eq.

6.30). For constant core mass, this ratio scales as µ̄ ∝ R4
c , and therefore the core

deforms less at higher radii.
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Figure 6.2: Sample tidal Love numbers h2c (top) and k2 (bottom) for a gas giant
with mass MJ , radius RJ , and core mass Mc = 5M⊕, as a function of shear
modulus µ for several values of fractional core radius rc ≡ Rc/R.

6.5.2 Dissipation of viscoelastic core

We now consider tidal dissipation of a viscoelastic core, modeled by a complex

shear modulus. We take

µ→ µ̃ ≡ µ̃1 + iµ̃2, (6.31)
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and assume the simplest viscoelastic model - the Maxwell model, such that

(Henning et al., 2009)

µ̃1 =
µ (ω/ωM)2

1 + (ω/ωM)2 , (6.32)

µ̃2 = − µ (ω/ωM)

1 + (ω/ωM)2 , (6.33)

where ω is the forcing frequency in the reference frame of the planet, and ωM

is the Maxwell frequency given by ωM ≡ µ/η, where µ is the normal shear

modulus of the core and η the viscosity of the core. Under the Maxwell model,

the solid core responds viscously for ω <∼ ωM and elastically for ω >∼ ωM .

Figure 6.3 shows tidal dissipation rates, characterized by Im[k2], as a func-

tion of the forcing frequency, for different values of µ and η. Since η only enters

into the expression for µ through the ratio ω/ωM , it is not surprising that chang-

ing η simply shifts the tidal dissipation curve horizontally without changing

the strength (Fig. 6.3, bottom). The effect of µ is more complicated (Fig. 6.3, top

panel) and can shift the curve up/down as well. Since µ does not directly af-

fect the viscous properties of the core, it makes sense that a change in µ shifts

the curve such that the tidal response on the viscous side (ω <∼ ωM ) remains

unchanged.

6.5.3 Comparison with planet models with uniform-density

envelope

An analytical formula for the tidal number k2 was previously derived for giant

planet models with uniform envelope density (Dermott, 1979). Recent works

have used viscoelastic dissipation in the solid cores of such models to explain
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Figure 6.3: Sample tidal dissipation rates for a gas giant with mass MJ , radius
RJ with an n = 1 envelope, characterized by Im[k2], as a function of the forcing
frequency ω. Here Rc = 0.1R, and Mc = 5M⊕.Top panel: for a fixed viscosity
η = η0 ≈ 12.3 Gbar · s and three values of µ, were µ0 = 900 kbar. Bottom panel:
for a fixed µ = µ0 and three values of η.

the amount of tidal dissipation inferred from the evolution of Jupiter’s and

Saturn’s satellites (Remus et al., 2012b, 2015) and from constraints on high-

eccentricity migration of hot Jupiters (Storch and Lai, 2014). In Figure 6.4 we

compare the dissipation levels in planets with n = 1 vs uniform-density en-

velopes. While we do not attempt to explore the full parameter space here,

Figure 6.4 suggests that the difference between the two depends most strongly

on the density of the core, with the n = 1 dissipation being stronger in more
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Figure 6.4: Comparison of tidal response curves for a gas giant with mass MJ ,
radius RJ with an n = 1 envelope (solid lines) vs n = 0 envelope (dashed
lines). Top panel: for a solid core of fixed density ρc = 12.5g cm−3 but varying
radii rc ≡ Rc/R. Bottom panel: for a solid core of fixed mass Mc = 3M⊕ but
varying radii. The core mass and density in each panel have been selected such
that the r = 0.1 curves are identical in the top and bottom panels. We assume
µ = µ0 = 900 kbar and η = η0 = 12 Gbar · s.

compact cores by as much as a factor of few.
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Figure 6.5: Tidal response for a super-Earth analogue similar to Kepler-11d, as-
suming an n = 1 envelope.

6.5.4 Application to Super-Earths

While in this work we focus mainly on gas giants, the formulae presented in

section 6.4 do not assume the core radius to be small. Thus, in principle, they

may be applied to super-Earths - with the caveat that super-Earths are not likely

to be well-described by n = 1 envelopes. In Figure 6.5 we present the Love

numbers for a super-Earth analogue similar to Kepler-11d (Lissauer et al., 2013),

consisting of a solid core and a n = 1 gas envelope that is ∼ 15% by mass, but

∼ 50% by radius. In this case the effect of the “core” shear modulus on the

surface k2 is significant when µ is varied by a few orders of magnitude.
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6.6 Conclusion

We have presented a general method of computing the tidal Love numbers of

giant planets consisting of a uniform elastic solid core and a non-uniform fluid

envelope. We show that if the envelope obeys the n = 1 polytropic equation of

state (P ∝ ρ2), simple analytical expressions for the tidal Love numbers can be

obtained [see Eqs. (6.23)-(6.26)]. These expressions are valid for any core size,

density, and shear modulus. They allow us to compute the tidal dissipation

rate in the viscoelastic core of a planet by using a complex shear modulus that

characterizes the rheology of the solid core. Our results improve upon previous

works that are based on planetary models with a solid core and a uniform (n =

0) envelope. In general, we we find that while for diffuse (low density, larger

size) cores, the dissipation rates of the n = 0 envelope models can be higher

than the n = 1 models, for more compact cores the n = 1 envelope models have

higher dissipation rates by as much as a factor of few.

While we have focused on analytical expressions for the Love numbers in

this paper, our method and equations can be adapted for numerical computa-

tion of the real (non-dissipative) Love numbers for any envelope equation of

state. In particular, they can be used to study tidal distortion of super-earths,

which typically contain a H-He envelope (a few percent by mass) surrounding

a rocky core (Lissauer et al., 2014), or tidal distortion in gas giants with more

realistic equations of state. It is possible that for some exoplanetary systems,

particularly those containing hot Jupiters, the tidal Love number k2 can be con-

strained or measured using secular planet-planet interactions (Becker and Baty-

gin, 2013; Mardling, 2010). This would provide a useful probe of the interior

structure of the planet.
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In the presence of viscosity in the solid core, additional work is still needed

to obtain the tidal viscoelastic dissipation rate even when numerical results for

the real Love numbers are available. Thus, our analytical expressions will be

useful, as they allow for simple computation of the tidal dissipation rate via the

correspondence principle, and can serve as a calibration of numerical results.
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CHAPTER 7

CONCLUSION

The purpose of this thesis work has been to consider two separate topics

that may have relevance to the theoretical puzzles hot Jupiter (HJ) formation

presents: the generation of spin-orbit misalignment via the Lidov-Kozai mech-

anism, and tidal dissipation in the cores of proto-HJs.

In chapter 2, first published in Science in 2014 (Storch et al., 2014), we demon-

strated that coupling between the stellar spin vector and the proto-HJ orbital

angular momentum vector during Lidov-Kozai cycles results in a rich variety

of dynamical behaviors for the stellar spin axis orientation. We showed that,

under certain conditions, the stellar spin axis may tumble chaotically, and that

the final, potentially observable, distributions of HJ spin-orbit misalignments

should be a function of the planet mass. Because the stellar spin precession rate

depends on both the planet mass and on the spin rate of the star, we have also

suggested that different stellar spin rates and spindown histories should also

affect the final distribution of misalignments.

In chapter 3, first published in MNRAS in 2015 (Storch and Lai, 2015b), we

further explored the stellar spin-orbit dynamics by considering an idealized

Lidov-Kozai system, unaffected by short-range forces and tidal dissipation. We

showed that much of the chaotic behavior discussed in the previous chapter can

be explained via the Chirikov criterion of resonance overlap (Chirikov, 1979).

We showed that a resonance occurs in the system whenever the averaged stel-

lar spin precession rate is equal to an integer multiple of the Lidov-Kozai rate,

and we discussed in detail the various features and interactions of these reso-

nances. Finally, we suggested that a novel mechanism termed “adiabatic advec-
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tion” could be another, previously unexplored, mode of generating spin-orbit

misalignment during Lidov-Kozai cycles.

In chapter 4, based on work that is in preparation for submission to MNRAS,

we relaxed the idealized assumptions made in the previous chapter by consid-

ering both the effects of short-range forces and tidal dissipation. We discussed

four non-trivial regimes of outcomes for the stellar spin-orbit misalignment dis-

tributions, and identified two parameters that determine these outcomes. We

showed that “adiabatic advection”, introduced in the previous chapter, is, in-

deed, one of these outcomes. Based on our work, under the simplifying as-

sumption that the stellar quadrupole does not induce precession in the planet’s

orbit, given a system with a set of initial orbital parameters, a planet mass, and

a stellar spin rate, it is possible to predict whether the system will be able to

achieve large spin-orbit misalignment.

In chapter 5, first published in MNRAS in 2014 (Storch and Lai, 2014) we ad-

dressed the existing issues surrounding tidal dissipation in the interiors of giant

planets, and hot Jupiters in particular, by considering the effects of tidal dissipa-

tion in the (hypothetical) solid cores of these planets. By assuming a simplified

model of a two-layer planet with a solid core and a uniform fluid envelope,

we showed that, for certain core viscosities and shear moduli, it is possible to

construct tidal dissipation models that reconcile all existing constraints on tidal

dissipation in giant planets.

In chapter 6, first published in MNRAS in 2015 (Storch and Lai, 2015a), we

extended the analysis of chapter 5 to models of giant planets with a solid core

and a polytropic n = 1, rather than uniform, envelope. This model is more ap-

propriate for the description of giant planets, as it correctly reproduces the fact
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that their radii are nearly independent of their masses. Using this model, we

provided simple semi-analytical formulae for the tidal dissipation as a function

core viscosity, size, and modulus, thus facilitating potential future use in simu-

lations of high-eccentricity migration of HJs and other potential applications.

In spite of the wealth of HJ formation theories that have been developed,

HJs remain largely enigmatic, with no definitive answers reached. The next

few years promise to be an exciting time for HJ research, however, as more and

more HJs are discovered and characterized via radial velocity surveys. Slowly

but steadily, soon our knowledge of HJs will begin to reach critical mass, and

we will begin to be able to discriminate between different formation theories.

Exciting times are coming, and that’s something to look forward to.
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